## CURVES FROM STRAIGHT LINES

The SKA will have thousands of radio telescopes all working together. All radio telescopes have the same shape dish. This shape is called a paraboloid. You can make a paraboloid by getting a parabola and rotating it around its centre.
Whilst it is fairly easy to plot and draw a parabola on graph paper, it is not the only way to do it. You can draw an approximation of a parabola using perfectly straight lines (it just takes a lot of them).

## Drawing Parabolas

You will need

$$
\begin{array}{lll}
\text { Graph paper } & \text { Ruler } & \text { Pencil }
\end{array}
$$

## What to do



The most famous way of doing this involves drawing a pair of axes like this. The scale of the axes will affect how the parabola forms. You might want to start with a scale of 1 unit per centimetre.
First, draw a line on the graph paper from the 6 on the vertical axis to the 1 on the horizontal axis.

Second, draw a line from the 5 on the vertical axis to the 2 on the horizontal axis.
Continue joining up the numbers (6 to 1,5 to 2,4 to 3,3 to 4,2 to 5 and 1 to 6).
You end up with an approximation of a famous curve called a parabola.
With only 6 points, the curve is noticeable, but still looks like it is made of lots of straight lines. The more points - and more lines you use - the more pronounced it becomes.

## Explore

You can change what the curve looks like by altering the angle and length of the axes.


This parabola was drawn using axes set at $45^{\circ} \ldots$


This parabola was drawn
using axes set at different scales...

You can combine more than one set of axes. As long as the lines cross each other, you'll make a parabola.


In these examples, the length of the line that you draw changes - the line joining $(0,1)$ and $(6,0)$ is much longer than the line joining $(3,4)$ and $(4,3)$.

What do you think would happen if you created a set of parabolas, but using a set of axes like this?

What do you think would happen if you created a curve in the same sort of way, but kept the lines joining the points the same length? The lines won't always end on a unit, but that's alright.

