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From here to there: The path to computational
fluency with multi-digit multiplication+

Janette Bobis

University of Sydney

Drawing upon research, theory, classroom and personal experiences, this paper
focuses on the development of primary-aged children's computational fluency with
multi-digit multiplication. Getting children from 'here' (current strategy use) to
'there' (a more efficient strategy) is often not a straight-forward path. The critical
links between number sense and a child’s ability to perform mental and written
computation with ease are examined.

Many readers will know the story of the famous mathematician Johann Carl Friedrich
Gauss (1777–1855). As a young boy he was prone to daydream in class. One day his
teacher decided to punish him for not paying attention. He was asked to add all the
numbers from 1 to 100. Much to the annoyance of the teacher, young Carl was able to
derive the correct answer in seconds. Fortunately for Carl, he knew a short-cut. He
realised that adding pairs of numbers (e.g., 1 + 100, 2 + 99, etc.) all equalled the same
number: 101. He figured that there were 50 such pairs, so calculated the total to equal
50  101 or 5050.

Recently I related this story to a group of primary-school teachers. One teacher
immediately asked, “But who taught him that?” This question sparked a discussion
about the critical relationship between a person’s understanding of mathematics and
their computational fluency. The teachers agreed that Carl’s in-depth understanding of
mathematics enabled him to see patterns and relationships that made the computation
more manageable, but that his knowledge of basic facts and the fluency with which he
could compute were equally important. The teachers concluded that understanding
without fluency can inhibit the problem solving process.

This paper focuses on the development of primary-aged children’s computational
fluency. It emphasises the critical links between number sense and a child’s ability to
perform mental and written computation. The case of multi-digit multiplication is used
to illustrate these important links.

Computational fluency:
Number sense and the standard algorithm

The idea of teaching mathematics for understanding and for meaningful learning to
occur has been advocated for over half a century (Brownell, 1935). However, it was not
until the 1980s that the term “number sense” was first used to refer to those who had a
deep understanding of numbers. The focus on number sense is manifested in the recent
and on-going emphasis in international curriculum and policy documents on mental
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computation (e.g., Australian Education Council, 1991; National Council of Teachers of
Mathematics, 2000). Research has shown that those who are good at mental
computation possess a well-developed sense of number (McIntosh & Dole, 2000).

The increased emphasis on mental computation and number sense has seen a
corresponding de-emphasis in curricula on standard algorithms. An algorithm is a
specified multi-step procedure that produces an answer for any given set of problems
and is characterised by long-term practice. While still recognised as important, some
Australian state syllabus documents have delayed the introduction of standard
algorithms for around two years to allow a focus on mental strategies for as long as
possible (e.g., Board of Studies, New South Wales [BOSNSW], 2002). The worry with
an early emphasis on standard algorithms is that students will shift their focus to
executing convenient procedures rather than on understanding the mathematics.

A concern is that educators will view the development of number sense and fluency
in written and mental computation as separate bodies of knowledge requiring separate
instruction. In fact, computational fluency, whether employing mental or written
methods, and number sense are intertwined and should be developed together. The aim
of the following sections is to examine how children develop proficiency in their
computational methods while instruction remains focused on learning with
understanding.

Understanding the development of children’s strategies

While a number of research-based “frameworks” provide excellent descriptions of
learning pathways by which children’s computational strategies develop, they fail to tell
us about how children progress to use a more efficient strategy in preference to another
less efficient one. It is imperative that teachers understand how children make this shift.

As children become more competent mathematicians, they develop a variety of
thinking strategies for solving mathematical problems. Generally, children initially
apply basic counting strategies to help them solve simple numerical problems before
moving onto using more complex non-counting strategies. While the strategies that
develop usually become more sophisticated as children learn more efficient ways of
doing mathematics, it is now well acknowledged that at any one time, a child will use a
multiplicity of strategies and that often these strategies will not be the most efficient
ones a child is capable of performing. Such inefficient strategies persist because while
they may be slow, they eventually yield the correct answer (Gould, 2000). When a child
is placed under some form of cognitive demand, such as an imposed time limit, mental
fatigue or even boredom, they will often revert to a less sophisticated strategy that they
know well and can perform with minimal effort. A nine year old explained this to me
once while I questioned her about her strategies for addition:

I know when I just have to add a small number—say five or less—then its fast for
me to count by ones. But if its 20 or 30 to add, then I will stop and think of a better
way that does not use just ones because I know it will take me too long to count
that many. Sometimes I just want to count by ones because it’s too hard to think of
another way.

I learnt from this little girl that children modify their strategy use according to at
least two things: the demands of the mathematical problem and the limitations of their
knowledge. Another influence on children’s choice of strategy that I have observed
during my time in schools is that of textbooks or even teachers themselves. In the
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attempt to introduce students to a variety of mental and written methods, instructional
material may overemphasise or specify the use of a particular strategy or scaffold (e.g.,
the empty number line) when students are already working beyond what is specified
(see Bobis & Bobis, 2005). The challenge for teachers is to encourage the development
of, and consistent use of, more efficient and appropriate strategies for solving
mathematical problems without it being “too hard” for children. To do this, it is
imperative that teachers not only understand what these strategies are, but how a more
efficient strategy becomes a student’s preferred strategy even when placed in a stressful
situation. The diagrammatic representation of Siegler’s (2000) overlapping wave theory
has helped further my own understanding of how this can be achieved (see Figure 1). I
have shared Siegler’s theory with practicing and prospective teachers and found it
beneficial in explaining how a more efficient strategy can become a child’s preferred
strategy.

Siegler’s (2000) overlapping wave theory is based on three assumptions: (1) children
typically use a multiplicity of strategies to solve a single problem; (2) less and more
efficient strategies may coexist over prolonged periods of time and not just for short
periods of transition; and (3) the relative reliance on existing and more efficient
strategies can be changed given appropriate experiences. The first two assumptions are
represented diagrammatically in Figure 1. The third assumption is addressed later in this
paper.

Figure 1. Diagram representing Siegler’s overlapping waves model.

It can be seen from Figure 1 that at any one point in time, a student may use a range
of strategies. However, the relative frequency with which particular strategies are used
over time may vary continuously, with new strategies becoming more prevalent and
some more inefficient strategies stopping. By following the path of a single strategy, it
can illustrate how some strategies will often be used for a prolonged period of time even
after more efficient strategies have been introduced. This can be exemplified by a
student who uses counting-on by ones to solve simple addition problems such as 7 + 2
as a 5 year old, and who continues to use the same strategy to solve 47 + 12 as a 10 year
old. Siegler suggests that as a child progressively learns more efficient strategies they
pass through four dimensions or components of change. These components range from
the initial use of the strategy, which in some cases may at first be used at an
unconscious level, to a stable, precise and efficient use of the strategy. The four
dimensions along which learning occurs include:
1. The acquisition or introduction of a more advanced strategy;
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2. An increased reliance or frequency of use of the new strategy within the set of the
child’s existing strategies;

3. An increased appropriate choice of the strategy; and
4. An improved execution of the more advanced strategy that can lead to it

becoming increasingly automated.
While this model for strategy development is based on the assumption that children
learn by doing, it is important to emphasise that simply drilling the strategies is not
enough. Understanding is also crucial. We know that the greater the degree of
understanding, the less practice that is required to obtain fluency and to sustain the
change in strategy use. Additionally, each new strategy competes for a long time with
more familiar strategies, so it may not be used consistently as their preferred strategy
for some time and there may be occasions when a child seems to regress in their
strategy use. In other words, getting children to move from their current array of
preferred strategies (the “here” strategies) to a more efficient strategy (the “there”
strategies) is not a straightforward process.

The case of Crystal and multi-digit multiplication

I first met Crystal when her Year 6 teacher asked me to assist with the development of
an intervention program for a small group of students in her class. These students were
experiencing difficulty with the algorithm for multi-digit multiplication and the teacher
was unsure what remediation was needed. This section details the journey to
computational fluency of one child from that group.

Frameworks describing developmental pathways of children’s thinking strategies for
addition, subtraction and single digit multiplication are now quite common (see, Bobis,
Clarke, Clarke, Thomas, Young-Loveridge, Wright & Gould, 2005) and some are
actually embedded into curricula (e.g., BOSNSW, 2002; Van den Heuvel-Panhuizen,
2001). However, much less is known about multi-digit multiplication. Fuson (2003)
reports preliminary research that reveals children use a progression of strategies from
(a) direct modelling with concrete materials or semi-abstract drawings, to (b) methods
involving repeated addition, such as doubling, to (c) partitioning methods. Partitioning
strategies normally include the partitioning of one number or both numbers into tens
and ones or partitioning by a number other than 10.

The standard algorithm for multi-digit multiplication most commonly used in NSW
primary schools requires a number of steps involving multiplication and addition. It also
relies on the answers at each step being properly aligned according to their correct place
value. Such alignments can be accomplished without any understanding of a number’s
true value. In Crystal’s case, errors in her multi-digit multiplication were the result of a
range of factors. The single-digit multiplication work samples in Figure 2 indicate that
Crystal could efficiently solve single-digit computations when multiplying by numbers
less than 7. However, she did not know all her multiplication facts from 7 onwards, thus
hindering her computational fluency. This was later confirmed in an interview with
Crystal. She had memorised most facts to 6 10, but seemed unaware of the
commutative property of multiplication. Hence, she was unable to see that 6x8 was the
same as 8x6. In addition, the work samples indicate that Crystal was not only making
procedural errors when carrying, but that she had little understanding of place value
when multiplying by tens. This is a very common error in students’ execution of the
algorithm for multi-digit multiplication and is generally a result of learning the
procedure by rote. To overcome these procedural and conceptual errors, Crystal needed
to understand the distributive property of multiplication.
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Figure 2. Examples of Crystal’s single digit and multi-digit multiplication.

A program of work starting with Crystal’s understanding of the commutative
property of multiplication was implemented by the classroom teacher. It was decided to
strengthen Crystal’s knowledge base of single-digit multiplication before moving to the
more difficult multi-digit multiplication computations. While this initial instruction
spanned a few weeks, it is the understanding of the mathematics underlying multi-digit
multiplication that is my focus here. It was during our search for a strategy to help
Crystal understand the underlying mathematics that the classroom teacher and I learnt
most about Crystal’s mathematical abilities and about teaching multi-digit
multiplication via a number sense approach.

We soon learnt that if Crystal was going to develop an understanding of the
distributive property of multiplication, it needed to be presented in a visual form. Early
attempts to explain this property through purely abstract means (e.g., 14  5 = 10  5 +
4  5) had little success. Visual representations of double-digit numbers became very
cumbersome and messy for Crystal, thus making the learning and teaching tedious. It
was at this point that we encountered a method involving partitioning of numbers
according to their place value and a convenient visual model (Fuson, 2003). We started
by introducing Crystal to array’s incorporating tens and ones (see Figure 4 for an
expanded and abbreviated model of an array). The visual representation supported
Crystal’s understanding of multiplying all the combinations in two double-digit
numbers.

Figure 4. Array structures used to model all combinations in multi-digit multiplication.
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The array models scaffolded the introduction of mental strategies involving
partitioning, and at the same time provided a convenient representation of the
distributive property of multiplication. Within two weeks of instruction, the visual
representation of the array was unnecessary and Crystal was able to record her thinking
numerically (see Figure 5). As she gained more confidence with this process, Crystal
eventually took short-cuts and discarded recordings to the right of the algorithm.

Figure 5. The distributive property is emphasised to assist understanding of the algorithm.

While this sequence of instruction was first introduced to cater for the needs of
Crystal and a few other students in the class, the teacher decided to integrate the array
model into her regular classroom teaching of multi-digit multiplication. After
witnessing the benefits of this process of instruction the teacher interviewed more
students from her class to determine their level of understanding of multi-digit
multiplication. She was alarmed to find many other students implementing the standard
algorithm correctly, but without understanding the underlying mathematics.

Conclusion

High levels of efficiency in computation remain a goal of our mathematics curricula; the
process by which it is achieved needs to take account of how students develop a sense
of number. The path to computational fluency is not a straight-forward one for most
students. However, it is clear that the promotion of number sense is critical to a basic
understanding of mathematics and to a child’s ability to compute easily.
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