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LAUNCHING MATHEMATICAL FUTURES:  
THE KEY ROLE OF MULTIPLICATIVE THINKING 

DIANNE SIEMON 

RMIT University 

dianne.siemon@rmit.edu.au 

 
Access to multiplicative thinking has been identified as the single, most important 
reason for the eight-year range in mathematics achievement in Years 5 to 9. While 
elements of multiplicative thinking are variously represented in the Australian 
Curriculum, the connections between these and how they contribute to the 
development of multiplicative thinking over time is not entirely clear. Two aspects 
of Hanna Neumann’s internationally respected reputation as a mathematician, 
teacher, researcher, and mentor will be used to frame this presentation. The first is 
her commitment to making the abstract accessible. The second is her passionate 
interest in reforming school mathematics curricula. Examples will be used to 
demonstrate how the abstract might be rendered accessible in the context of school 
mathematics and, conversely, how abstracting the everyday can help challenge 
long-held beliefs about learning mathematics. But the major part of this 
presentation will be concerned with the critical importance of multiplicative 
thinking in launching mathematical futures and its representation in the Australian 
Curriculum. 

Introduction 

It is an honour to have been asked to do the Hanna Neumann lecture at this, the 24th 
Biennial Conference of the Australian Association of Mathematics Teachers (AAMT). 
Hanna and Bernard Neumann came to Australia in 1963 to take up positions at the 
Australian National University—Hanna as a professorial fellow until her appointment 
to the chair of pure mathematics in 1964, and Bernard as Professor of Mathematics in 
the newly formed research Department of Mathematics at ANU. Convinced that 
mathematics education in Australia was ‘lagging behind the rest of the world to a 
frightening extent” (Fowler, 2000), Hanna became actively involved in the Canberra 
Mathematical Association providing courses for secondary mathematics teachers and 
contributing to the discussions on the new senior secondary mathematics syllabuses in 
NSW. 
 Previous lectures have been given by those who knew Hanna personally or at least 
heard her speak, for example, Dr Susie Groves and Dr Peter Taylor both of whom could 
claim 0 degrees of separation. I can claim 1 degree of separation having undertaken my 
Honours year in Pure Mathematics at Monash with Colin Fox and Steve Pride both of 
whom went on to ANU to study under either Hanna or Bernard and complete PhDs in 
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Mathematics. Bernard was a capable musician and Colin—now a broadcaster for ABC 
Classic FM—remembers fondly his many visits to the Neumann household for musical 
get togethers where Hanna, always working, would join them at the end of the evening 
for coffee.  
 We are indebted to Hanna for the very many legacies she has left behind but as a 
mathematics educator there are two that I would like to take up in this address—the 
first is her deep commitment to making the abstract accessible. The second was her 
passion for reforming school mathematics curricula (Fowler, 2012; Newman & Wall, 
1974).  

A commitment to making the abstract accessible 

According to Newman and Wall (1974), Hanna Neumann developed a style of teaching 
that made the “acquisition of very abstract ideas accessible through judicious use of 
more concrete examples and well-graded exercises” (p. 4). She regularly offered 
lectures on topics that were not considered formally in University courses but served to 
convey her own joy in mathematics, participating in the model-building group and 
introducing undergraduate students to ‘new mathematics’ in creative and innovative 
ways. She also took an active interest in the professional development of secondary 
teachers of mathematics. For example, in 1971 she addressed a regional meeting of 
teachers at Wodonga Technical School on ‘Modern Mathematics—Symbolism and its 
importance at the secondary and tertiary levels’. An issue, many would agree, we are 
still grappling with today.  
 Having completed my undergraduate degree in pure mathematics at Monash, I had 
no idea at the time just how ‘modern’ the mathematics courses were at Monash. All I 
know is that when we arrived as naïve first year students having done reasonably well 
under the ‘old mathematics curriculum’, we were deep-ended into the ‘new 
mathematics’. My first semester was a blur—nothing looked or felt like anything we had 
done before. We were introduced to sets, fields, and groups and were required to use a 
very different type of mathematical language—but by October or so, it all magically fell 
into place and I remember being carried away by the sheer beauty and connectedness 
of it all—Hanna would have been proud.  
 As a teacher of secondary mathematics and fledgling mathematics educator I was 
again lucky to be in the right place at the right time. The Study Group for Mathematics 
Learning (SGML) was set up by an enthusiastic group of mathematics teachers1 who 
were keen to apply the ‘new mathematics’ in schools. Zoltan Deines spent some time in 
Melbourne around this time and the SGML workshops familiarised us with the use of 
structured materials to support a different approach to mathematics teaching and 
learning (e.g., Multibase Arithmetic Blocks, Attribute Blocks, Logic Tracks and games 
involving multiple representations and embodiments). 

Exploring group theory 

Some years later, encouraged by what I had learned, I incorporated my own version of 
Dienes’ ‘games’ (e.g., Dienes, 1960) to illustrate the properties of mathematical groups. 
I was the Year 9 and 10 Coordinator at Mater Christi College in Belgrave and we were 

                                                

1  Notably Vic Ryle and Ken Clements 
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keen to see if we could encourage more girls to continue with mathematics into Year 11 
and 12, I set up an elective called ‘Advanced Maths’ which was open to all and designed 
to explore mathematics that was not in the curriculum through games and activities. 
We worked with Boolean Algebra using logic tracks, vector mappings using a 
rectangular courtyard, and I designed a line-dancing type of routine based on Dienes’ 
games to tease out the properties of cyclic groups. Each set of four girls formed a square 
ABCD and the moves were limited to: 
 N: no move, stay in the same place. 
 R: move one place right (A to B to C to D to A) 
 L: move one place left (A to D to C to B to A) 
 C: move to the diagonally opposite place (A to C to A, B to D to B) 

Table 1. Table of moves. 

 N R L C 
N N R L C 

R R C N L 

L L N C R 

C C L R N 

 
 We also explored Modulo Arithmetic, otherwise known as clock arithmetic, in this 
context, specifically, {0, 1, 2, 3; + mod 4} where, for example, 2 + 3 ∼ 1 mod 4, and 2 x 3 
∼ 2 mod 4. This resulted in a similar table to the one above and facilitated a discussion 

about patterns and commonalities. In particular that each combination of moves or 
combination of digits under addition generated another element of the set (closed 
property), that for every element of each set there was another element that when 
combined/added resulted in the original element (identify element), that for each 
element there was another element that when combined with the original element 
resulted in the identity element (inverse), and that order of combination or addition did 
not matter, that is the operation in each case was commutative. This lead us to consider 
other properties and eventually a better, deeper understanding of the real numbers. 

The case of 9C 

In my second year at Mater Christi I found myself teaching a Year 9 class of girls who 
were intent on leaving school as early as possible (the ‘C’ stood for ‘commercial’). 
Financial mathematics was a core component of their ‘modified’ program but the 
available text treated these topics in a particularly procedural way. I decided to try a 
different approach. I asked the students to pinch the pages of the respective chapters 
between their forefinger and thumb (it amounted to about half a centimetre) and said, 
‘I’m going to let you in on a secret. All of the problems in these pages are of the type n% 
of m = p’. Over the course of two weeks we selected and solved problems according to 
type, that is, (i) n and m known, (ii) n and p known, or (iii) m and p known, and with 
little regard for context (i.e., profit and loss, simple interest, discount, etc.). This might 
seem counterintuitive, but it worked. At the end of the two weeks not only were they 
happy to sit the test, they all passed with flying colours and asked if we could do more 
maths like that—I obliged and we used this technique to explore Pythagoras’ Theorem, 



SIEMON 

MATHEMATICS: LAUNCHING FUTURES 
39 

which was not in their course, but it demonstrated to them that they could perform 
equally as well as the girls in 9P (P for ‘professional’). This taught me a valuable lesson 
about the clarifying power of mathematical structure, and that ‘real-world’ contexts can 
sometimes get in the way of learning mathematics. 

Making the everyday abstract 

Sometimes, making the everyday abstract can be a useful strategy to focus on the 
learning involved. For example, many years ago in an effort to convince parents that 
rote learning the multiplication ‘tables’ was ultimately counter-productive, I developed 
a set of * tables, where * was an operator defined as follows: a * b = ((a + b) × (a × 

b))/(b – a). Exerts from two * tables were provided (see Table 2) and all but a small 
group of parents were asked to learn these by whatever means they chose in 
preparation for a test in 10 minutes time. The small group were taught the meaning of 
the operator in terms of the rule: ‘sum multiplied by product, divided by the difference 
reversed’ and encouraged to practice applying the rule to any fact in the one and two * 
tables including the related facts (e.g., 4 * 1 as well as 1 * 4). 

Table 2. List of * facts. 

0 * 1 = 0 0 * 2 = 0 

1 * 1 = undefined 1 * 2 = 6 

2 * 1 = –6 2 * 2 = undefined 

3 * 1 = –6 3 * 2 = –30 

4 * 1 = –6.666… 4 * 2 = –24 

5 * 1 = –7.5 5 * 2 = –23.333… 

6 * 1 = –8.4 6 * 2 = –24 

 
 The test involved five ‘facts’, 3 * 1, 4 * 2, 6 * 1, 1 * 2 and 2 * 3. Not surprisingly, most 
parents remembered at least three of the facts and the best anyone, not involved in the 
small group did, was four out of five. Some assumed * was commutative, others 
complained that it was not fair as 2 * 3 was not in the list provided. By contrast, all of 
the small group were able to achieve five out of five correct. This prompted an 
extremely robust and valuable discussion about the importance of understanding the 
operator involved and not just relying on memory however effective this was in the 
short term. 
 Another example of the benefits of making the everyday abstract arose from inviting 
primary pre-service teachers to construct a completely new set of names and symbols 
for the digits 0 to 9 then brainstorm what might be involved in teaching these to a 
group of five-year-olds. This also led to a robust discussion on the nature of 
mathematics learning and our assumptions as teachers. I have not tried it, but 
extending this activity to another number base and generating multi digit numbers 
might also be worthwhile. 

Reforming mathematics curriculum 

In 1964 Hanna Neumann was actively engaged in the discussions on the new, senior 
secondary mathematics syllabuses in NSW and, as Newman and Wells (1974) point out, 
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“[it] was undoubtedly her work in evaluation of the draft proposals and her energetic 
work on suggestions for improvements, which earned for the Canberra Mathematical 
Association a reputation for trenchant and constructive criticism” (p. 6). It is in this 
same spirit that I offer the following commentary on mathematics curriculum in 
general and the role and place of multiplicative thinking in particular. 
 The crowded curriculum and the lack of succinct, unambiguous guidelines about the 
key ideas and strategies needed to make progress in school mathematic have been the 
concern of teachers of mathematics for many years. This is particularly the case for 
Number which successive mathematics curricula and text books have tended to 
represent as long lists of disconnected ‘topics’ that value the reproduction of relatively 
low-order skills and competencies rather than promoting deep understanding of key 
ideas, generalisation and problem solving (Siemon, 2011a).  
 While the importance of focussing on ‘big ideas’ is widely recognised (e.g., Charles, 
2005), there is little agreement about what these are or how these are best represented 
to support the teaching and learning of mathematics. For example, what might be a ‘big 
idea’ from a purely mathematical perspective (e.g., set theory), may not be a ‘big idea’ 
from a pedagogical perspective. That is, ‘big ideas’ need to be both mathematically 
important and pedagogically appropriate to serve as underlying structures on which 
further mathematical understanding and confidence can be built (Siemon, Bleckly & 
Neal, 2012). The Curriculum Focal Points for Pre-Kindergarten through Grade 8 
Mathematics: A Quest for Coherence (NCTM, 2006) go some way towards achieving 
this goal by providing a more detailed account of ‘important mathematics’ at each grade 
level for K to 8. But big ideas are notoriously difficult to accommodate in curriculum 
documents as Hanna Neumann experienced in her endeavours to introduce the big 
ideas of ‘modern mathematics’ into the NSW mathematics curriculum in the sixties. 
But this does not mean we should not engage with this slippery notion. Big ideas serve 
a useful purpose in that they operate as a test of curriculum coherence and serve as 
interpretive lenses through which skill-based content descriptors can be examined in 
more depth.  

Big ideas in mathematics 

For the purposes of the Assessment for Common Misunderstandings (Department of 
Education and Early Childhood Development, 2007; Siemon, 2006) and the 
Developmental Maps (Siemon, 2011b), which were developed for the Victorian 
Department of Education and Early Childhood Development, a ‘big idea’ in 
mathematics: 

• is an idea, strategy, or way of thinking about some key aspect of mathematics 
without which, students’ progress in mathematics will be seriously impacted; 

• encompasses and connects many other ideas and strategies; 
• serves as an idealised cognitive model (Lakoff, 1987), that is, it provides an 

organising structure or a frame of reference that supports further learning and 
generalizations;  

• cannot be clearly defined but can be observed in activity (Siemon, 2006, 2011b). 
 The big ideas identified for this purpose are shown in Table 3. The rationale for the 
choice of number and for considering multiplicative thinking in particular will be 
addressed in more detail below. 
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Table 3. Big Ideas identified for the Assessment for Common Misunderstanding Tools 

By the end of  ‘Big Idea’  

Foundation 
Trusting the Count—developing flexible mental objects for the numbers 0 to 
10 (2 tools) 

Year 2 
Place-value—the importance of moving beyond counting by ones, the 
structure of the base 10 numeration system (4 tools) 

Year 4 
Multiplicative thinking—the key to understanding rational number and 
developing efficient mental and written computation strategies in later years 
(6 tools) 

Year 6 
Partitioning—the missing link in building common fraction and decimal 
knowledge and confidence (7 tools) 

Year 8 
Proportional reasoning—extending what is known about multiplication and 
division beyond rule-based procedures to solve problems involving fractions, 
decimals, per cent, ratio, rate and proportion (8 tools) 

Year 10 

Generalising—skills and strategies to support equivalence, recognition of 
number properties and patterns, and the use of algebraic text without which 
it is impossible to engage with broader curricula expectations at this level (4 
tools) 

Multiplicative thinking 

The capacity to think multiplicatively is crucial to success in further school 
mathematics. It underpins nearly all of the topics considered in the middle years and 
beyond, and lack of it or otherwise is the single most important reason for the eight-
year range in mathematics achievement in Years 5 to 9 (Siemon, Virgona & Corneille, 
2001). Hence the choice of number for the ‘big ideas’ listed above. 
 Multiplicative thinking involves recognising and working with relationships between 
quantities. In particular, it supports efficient solutions to more difficult problems 
involving multiplication and division, fractions, decimal fractions, ratio, rates and 
percentage. Although some aspects of multiplicative thinking are available to young 
children, multiplicative thinking is substantially more complex than additive thinking 
and may take many years to achieve (Vergnaud, 1983; Lamon, 2007). This is because 
multiplicative thinking is concerned with processes such as replicating, shrinking, 
enlarging, and exponentiating that are fundamentally more complex, rather than the 
more obvious processes of aggregation and disaggregation associated with additive 
thinking and the use of whole numbers (Siemon, Beswick, Brady, Clark, Faragher & 
Warren, 2011). 
 The Scaffolding Numeracy in the Middle Years (SNMY) research project (see 
Siemon, Breed, Dole, Izard & Virgona, 2006) was designed to explore the development 
of multiplicative thinking in Years 4 to 8. Multiplicative thinking was seen to be 
characterised by: 

• a capacity to work flexibly and efficiently with an extended range of numbers (i.e., 
larger whole numbers, decimals, common fractions, ratio and per cent),  

• an ability to recognise and solve a range of problems involving multiplication or 
division including direct and indirect proportion, and  

• the means to communicate this effectively in a variety of ways (e.g., words, 
diagrams, symbolic expressions, and written algorithms).  

 The SNMY project used rich tasks in a pen and paper format to test a hypothetical 
learning trajectory for multiplicative thinking in Grades 4–8 (Siemon et al., 2006). 
Item response theory (e.g., Bond & Fox, 2001) was used to identify eight qualitatively 
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different categories of responses, which subsequently lead to a Learning and 
Assessment Framework for Multiplicative Thinking (LAF) comprised of eight ‘zones’ 
representing increasingly sophisticated levels of understanding (see Table 4). Rich 
descriptions were developed for each zone and teaching advice was provided in the 
form of what needed to be consolidated and established and what needed to be 
introduced and developed to scaffold multiplicative thinking to the next zone.  

Table 4. The Learning Assessment Framework for Multiplicative Thinking  
(Siemon et al., 2006) 

Zone 1: Solves simple multiplication and division problems involving relatively small whole 
numbers but tends to rely on drawing, models and count-all strategies. May use skip counting 
for groups less than 5. Makes simple observations from data and extends simple number 
patterns. Multiplicative thinking (MT) not really apparent as no indication that groups are 
perceived as composite units, dealt with systematically, or that the number of groups can be 
manipulated to support more efficient calculation 

Zone 2: Counts large collections efficiently—keeps track of count but needs to see all groups. 
Shares collections equally. Recognises small numbers as composite units (e.g., can count equal 
groups, skip count by twos, threes and fives). Recognises multiplication needed but tends not to 
be able to follow this through to solution. Lists some of the options in simple Cartesian product 
situations. Some evidence of MT as equal groups/shares seen as entities that can be counted. 

Zone 3: Demonstrates intuitive sense of proportion. Works with useful numbers such as 2 and 
5 and intuitive strategies to count/compare groups (e.g., doubling, or repeated halving to 
compare simple fractions). May list all options in a simple Cartesian product, but cannot explain 
or justify solutions. Beginning to work with larger whole numbers and patterns but tends to rely 
on count all methods or additive thinking (AT). 

Zone 4: Solves simple multiplication and division problems involving two-digit numbers. 
Tends to rely on AT, drawings and/or informal strategies to tackle problems involving larger 
numbers, decimals and/or less familiar situations. Tends not to explain thinking or indicate 
working. Partitions given number or quantity into equal parts and describes part formally. 
Beginning to work with simple proportion. 

Zone 5: Solves whole number proportion and array problems systematically. Solves simple, 2-
step problems using a recognised rule/relationship but finds this difficult for larger numbers. 
Determines all options in Cartesian product situations involving relatively small numbers, but 
tends to do this additively. Beginning to work with decimal numbers and percent. Some 
evidence MT being used to support partitioning. Beginning to approach a broader range of 
multiplicative situations more systematically 

Zone 6: Systematically lists/determines the number of options in Cartesian product situation. 
Solves a broader range of multiplication and division problems involving 2-digit numbers, 
patterns and/or proportion but may not be able to explain or justify solution strategy. Renames 
and compares fractions in the halving family, uses partitioning strategies to locate simple 
fractions. Developing sense of proportion, but unable to explain or justify thinking. Developing 
capacity to work mentally with multiplication and division facts 

Zone 7: Solves and explains one-step problems involving multiplication and division with 
whole numbers using informal strategies and/or formal recording. Solves and explains solutions 
to problems involving simple patterns, percent and proportion. May not be able to show 
working and/or explain strategies for situations involving larger numbers or less familiar 
problems. Constructs/locates fractions using efficient partitioning strategies. Beginning to make 
connections between problems and solution strategies and how to communicate this 
mathematically 

Zone 8: Uses appropriate representations, language and symbols to solve and justify a wide 
range of problems involving unfamiliar multiplicative situations, fractions and decimals. Can 
justify partitioning, and formally describe patterns in terms of general rules. Beginning to work 
more systematically with complex, open-ended problems. 
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 What the data that underpins this research-based framework shows is that the 
transition from additive to multiplicative thinking is nowhere near as smooth or as 
straightforward as most curriculum documents seem to imply, and that access to 
multiplicative thinking as it is described here represents a real and persistent barrier to 
many students’ mathematical progress in the middle years of schooling (Siemon & 
Breed, 2005; Siemon et al., 2006). 
 To become confident multiplicative thinkers, children need a well-developed sense 
of number (based on trusting the count, place-value and partitioning) and a deep 
understanding of the many different contexts in which multiplication and division can 
arise (e.g., sharing, equal groups, arrays, regions, rates, ratio and the Cartesian 
product). The transition from additive strategies to meaningful, mental strategies that 
support multiplicative reasoning more generally requires a significant shift in thinking 
from a count of equal groups and a reliance on repeated addition, to the for each and 
times as many ideas for multiplication that underpin all further work with 
multiplication, division and rational number. While the array and region ideas for 
multiplication can be used to support a count of equal groups, their power lies in the 
fact that they can be used to underpin this important shift in thinking and, ultimately, 
the factor–factor–product idea that supports the inherently multiplicative operations 
of equipartitioning, replicating, enlarging, shrinking and a more generalised 
understanding of the relationship between multiplication and division. In addition, the 
region and for each ideas for multiplication are also critically important in the 
interpretation and construction of fraction representations (for a much more detailed 
discussion of these ideas see Siemon, Beswick, Brady, Clark, Farragher & Warren, 
2011). 

The difference between additive and multiplicative thinking 

The essential difference between additive and multiplicative thinking relates to the 
nature of the units under consideration. For addition and subtraction, “all the number 
meanings … are directly related to set size and to the actions of joining or separating 
objects and sets” (Nunes & Bryant, 1996, p. 144). In these situations it is possible to 
work with the numbers involved as collections that can be aggregated or disaggregated 
and renamed as needed to facilitate computation.  
 While it is possible to use repeated addition to solve multiplication problems and 
repeated subtraction to solve division problems, these are essentially additive 
processes—the only difference is that the sets being added or subtracted are the same 
size. Multiplicative thinking involves much more than this and “it would be wrong to 
treat multiplication as just another, rather complicated, form of addition, or division as 
just another form of subtraction” (Nunes & Bryant, 1996, p. 144). For example, 
consider the following Year 4 responses to the problem: how many muffins could be 
made with 6 cups of milk if 2/3 cup of milk produced 12 muffins? 
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Figure 1. Two solutions to the Muffin problem (Siemon et al., 2011). 

 The first response uses repeated addition to determine how many two-third cups are 
in 6 cups, and then counting to find the total number of muffins. The second solution 
recognises the proportional relationship between the quantity of milk and the number 
of muffins. Both strategies produce the correct answer, but the first is additive whereas 
the second is multiplicative. 
 For multiplication, it is necessary to simultaneously recognise and coordinate the 
number of groups (multiplier) and the number in each group (multiplicand) (Anghileri, 
1989; Jacob & Willis, 2001; Nunes & Bryant, 1996; Vergnaud, 1983). According to 
Steffe (1992), for a ‘situation to be established as multiplicative, it is always necessary at 
least to coordinate two composite units in such a way that one composite unit is 
distributed over the elements of the other composite unit’ (p. 264), resulting in a 
composite unit of composite units (e.g., see Figure 2). 

 

Figure 2. A composite unit of composite units. 

 Recognising and working with composite units introduces the distinction between 
how many (the count of composite units) and how much (the magnitude of each 
composite unit). This distinction is often overlooked in the rush to symbolise, with the 
result that many children interpret 3 groups of four as successive counts of four ones 
rather than 3 fours which emphasises the distribution of one composite unit over 
another. This has important implications for the development of multiplicative 
thinking and children’s capacity to understand fractions. By distinguishing between the 
count and the unit, children are more likely to recognise the multiplicative nature of 
our number systems For example, the digits in the numeral 34 are both counting 
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numbers (i.e., how many numbers), but their location or place determines the unit (i.e., 
how much). In the fraction ¾ the numerator indicates how many but the denominator 
indicates how much. They are also more likely to recognise the relative magnitude of 
different units (e.g., that 3 quarters is larger than 3 eighths) and the inverse 
relationship between how many and how much (e.g., the larger the number of 
shares/equal parts, the smaller each share/part).  

Multiple pathways to multiplicative thinking 

Nearly all of the research-based developmental frameworks for multiplication are 
framed in terms of counting-based strategies that ultimately terminate with a reference 
to the use of number fact knowledge (e.g., Department of Education & Early Childhood 
Development, 2010; Department of Education & Training, 2007; van den Heuvel-
Panhuizen, 2001). This is not surprising given the almost exclusive focus on equal 
groups and repeated addition in the early years. However, an increasing number of 
researchers (e.g., Confrey, Maloney, Nguyen, Mojica & Myers, 2009; Downton, 2008; 
Nunes & Bryant, 1996; Schmittau & Morris, 2004) suggest that there is a parallel path 
to the development of multiplicative thinking based on young children’s capacity to 
share equally and work with one-to-many relationships. For example, having explored 
the ‘Baa-Baa Black Sheep’ rhyme in literacy, a teacher posed the following question to 
her class of 5 and 6 year olds: ‘I wonder how many bags of wool would there be if there 
were 5 sheep?’ While most decided that there would be 15 bags of wool, what was 
interesting was the number of children who constructed abstract representations, in 
particular, representations that connected each sheep with three bags of wool (e.g., see 
Figure 3). 
 

 

Figure 3. Five year olds solution to the Baa-Baa Black Sheep problem (Siemon et al., 2011). 

 This suggests that the children understood the situation in terms of for each sheep 
there are 3 bags of wool. This is essentially a ratio or times as many idea (e.g., 3 times 
as many bags of wool as sheep) and is quite distinct from the equal groups idea, even 
though the children invariably counted by ones to arrive at the solution of 15 bags of 
wool altogether. 

The representation of multiplicative thinking in the Australian Mathematics 
Curriculum 

In most English-speaking countries, multiplication and division are introduced 
separately, with multiplication typically considered before division. Given what is 
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known about multiplicative thinking, young children’s experience with sharing, and 
evidence to suggest that simple proportion problems can be solved earlier than 
generally expected (e.g., Confrey et al., 2009; Nunes & Bryant, 1996; Schmittau & 
Morris, 2004; Siemon et al., 2006), the introduction of the Australian Curriculum: 
Mathematics [ACM] provided an opportune time to reconsider when and how we 
introduce these important ideas. How well has it fared?  
 A detailed analysis of the ACMs potential for developing multiplicative thinking is 
included in Appendix A. Here, I shall draw on some of the observations made 
previously (see Siemon, Blecky &Neal, 2012) in relation to the presence or otherwise of 
the key ideas and strategies mentioned above—the codes in brackets refer to the 
content descriptors in the ACM. 
 While sharing is mentioned in Foundations (ACMNA004) the only other reference 
to any of the key ideas discussed above is in Year 2 where students are expected to 
recognise and represent “multiplication as repeated addition, groups and arrays” 
(ACMNA031) and “division as grouping into equal sets” (ACMNA032). This reference 
to division is ambiguous as it could refer to quotition division (where the divisor refers 
to size of group) or partition division (where the divisor refers to the number of equal 
groups). However, grouping a collection into equal sets and working with arrays is no 
guarantee of multiplicative thinking unless the focus of attention is shifted from a count 
of groups of the same size (additive) to a given number of groups of any size (Siemon et 
al., 2011). Importantly, the region idea is not mentioned at all and yet this underpins 
the area (by or factor) idea of multiplication (i.e., each part multiplied by every other 
part) which is needed to support the multiplication of larger whole numbers (e.g., 2-
digit by 2-digit multiplication), the interpretation of fraction diagrams (e.g., thirds by 
fifths are fifteenths), and, ultimately, the multiplication and division of fractions and 
linear factors. 
 In Year 3 students are expected to “recall multiplication facts of two, three, five and 
ten and related division facts” (ACMNA056). This wording together with the previous 
(AMN026) and subsequent (AMN074) references to number sequences implies that the 
multiplication facts are learnt in sequence (e.g., 1 three, 2 threes, 3 threes, 4 threes, 5 
threes, etc.) rather than on the basis of number of groups irrespective of size (e.g., 3 of 
anything is double the group and one more group).  
 Factors and multiples are referred to in Year 5 (ACMNA098) and Year 6 
(ACMNA122), indices in Years 7 and 8 (ACMNA149 & ACMNA182), and solving 
problems involving specified numbers and operations across year levels (e.g., 
ACMNA100, ACMNA101 and ACMNA103). However, there is no suggestion of the 
connections between them or that something other than a repeated addition model of 
multiplication is needed to support a deep understanding of factors and indices 
(Confrey et al., 2009). 
 In the early years, the ACM refers to the capacity to “recognise and describe half as 
one of two equal pieces” (ACMNA016) and “to recognise and interpret common uses of 
halves, quarters and eighths of shapes and collections” (ACMNA033) but no mention is 
made of the important link to sharing which provides a powerful basis for the creation 
of equal parts and the link between fractions and partitive division (Nunes & Bryant, 
1996). In Year 3, students are expected to be able to “model and represent unit 
fractions including 1/2, 1/4, 1/3, 1/5 and their multiples to a complete whole” 
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(ACMNA058). This suggests that fraction symbols are expected at this stage, which is 
problematic given the well-known difficulties associated with interpreting fraction 
symbols and representations (e.g., Lamon, 1999). Also, the reference to counting 
fractions at Year 4 (ACMNA078) could lead to an over-reliance on additive, whole 
number-based approaches to locating fractions on a number line at the expense of 
multiplicative approaches such as equipartitioning (Confrey et al., 2009; Lamon 1999).  
 The ACM does not refer to proportional reasoning explicitly until Year 9 where 
reference is made to solving problems involving direct proportion and simple rates 
(ACMNA208) and enlargements, similarity, ratios and scale factors in relation to 
geometrical reasoning (ACMMG220 & ACMMG221). While many of the prerequisite 
skills are included in Years 6 to 8, these appear in the form of disconnected skills. For 
example, “find a simple fraction of a quantity” (ACMNA127) at Year 6, “express one 
quantity as a fraction of another”, “find percentages of quantities and express one 
quantity as a percentage of another” (ACMNA 155 & ACMNA158) at Year 7, and solve a 
range of problems involving percentages, rates and ratios (ACMNA187 & ACMNA188) 
at Year 8. Importantly, there is nothing to suggest how these skills relate to one another 
or their rich connections to multiplicative thinking more generally.  
 As the above discussion and the analysis in the Appendix shows, the content 
descriptors of the ACM have the potential to support the development of multiplicative 
thinking. But the extent to which this potential is realised is heavily dependent on how 
the descriptors are interpreted, represented, considered and connected in practice. 
Content descriptors do need to be in a form that is clearly assessable but, if these are 
taught and assessed in isolation with little attention to student’s prior knowledge and 
the underpinning ideas and strategies, there is a substantial risk that access to 
multiplicative thinking will continue to elude many. On the other hand, if the content 
descriptors are taught and assessed in conjunction with the proficiencies, that is, 
conceptual understanding, procedural fluency, mathematical reasoning and 
mathematical problem solving, the chances of increasing access to multiplicative 
thinking in the middle years can be greatly enhanced. 

Conclusion 

Hanna Neumann left a valuable legacy to mathematics and mathematics education 
both here and abroad. As one of the founding members of AAMT, it is fitting that we 
acknowledge her contributions to school mathematics in the biennial lecture that bears 
her name. Her commitment to making the abstract accessible and her passion for 
reforming school mathematics curriculum framed this presentation. In demonstrating 
how group theory might be explored in the context of dance and clock arithmetic and 
what can be gained from working with mathematical structures, I hope you too might 
be prompted to consider how you might make the abstract accessible and the everyday 
abstract. My comments on the place of multiplicative thinking in the Australian 
Curriculum: Mathematics, are offered in the same spirit and with the same motivation 
that Hanna offered her suggestions and feedback on the NSW senior secondary 
mathematics syllabuses in the sixties—that is, the need to recognise and focus on the 
‘big ideas’ in mathematics so that all learners have the opportunity to experience the joy 
of doing mathematics and to access the future that it affords. 
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Appendix: Opportunities for multiplicative thinking in the ACM 

Year 
Level 

Selected ACM Content 
Descriptors (ACARA, 2013)  

Relationship to Multiplicative Thinking 

Subitise small collections of objects 
(ACMNA003) 

Helps establish the notion of composite units—
children ‘see’ a collection of 4 ones as ‘four’ without 
having to count 

F Represent practical situations to model 
addition and sharing (ACMNA004) 

Sharing helps establish notion of equal shares, equal 
groups and relationship between the number of 
shares (how many) and the number in each share 
(how much) 

Develop confidence with number 
sequences to and from 100 by ones 
from any starting point. Skip count by 
twos, fives and tens starting from zero 
(ACMNA012) 

Skip counting, while essentially additive, if used as a 
strategy for physically counting large collections, 
helps establish one-many relationships and notion of 
composite units. Risk: limited to number naming 
sequences 

Recognise, model, read, write and order 
numbers to at least 100. Locate these 
numbers on a number line 
(ACMNA013) 

Locating numbers on a number line—if open—invites 
the use of multiplicative or equipartitioning based on 
benchmarks (e.g., it’s about half) 

Recognise and describe one-half as one 
of two equal parts of a whole. 
(ACMNA016) 

Introduces multiplicative partitioning and halving. 
Risk is that parts will not be seen in relation to the 
whole 

Investigate and describe number 
patterns formed by skip counting and 
patterns with objects (ACMNA018) 

Potential to support notion of composite units. Risk is 
that this will be limited to additive or repeating 
patterns rather than multiplicative or growing 
patterns 

1 

No further reference to sharing 

Investigate number sequences, initially 
those increasing and decreasing by 
twos, threes, fives and ten from any 
starting point, then moving to other 
sequences. (ACMNA026) 

Suggests a count of twos, threes, etc. Risk: limited to 
number naming sequences, preferences a count of 
groups as basis for multiplication facts 

Recognise and represent multiplication 
as repeated addition, groups and arrays 
(ACMNA031) 

Key representations. Risk: interpretation limited to 
equal groups, count of groups  

Recognise and represent division as 
grouping into equal sets and solve 
simple problems using these 
representations (ACMNA032) 

Inclusive of both forms of division (quotition and 
partition) . Risk: limited to count of groups, sharing 
not generalised to ‘think of multiplication” 

Recognise and interpret common uses 
of halves, quarters and eighths of 
shapes and collections 

Potential to engage students in equipartitioning, 
Risk: Fraction names seen as labels for parts rather 
than relationships. No involvement in 
equipartitioning, partitioning strategies, teaching 
may not deal with core generalisations 

2 

Place value appears to be treated additively 

Recall multiplication facts of two, three, 
five and ten and related division facts 
(ACMNA056)  
 

Implies memorisation of facts, unclear as to how 
these are represented (e.g., counts of 2 or 2 of 
anything). Risk: limited to equal groups, count of 
groups (i.e., ‘traditional tables’ representation) 

3 

Represent and solve problems involving Potentially supportive of multiplicative thinking if 
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multiplication using efficient mental 
and written strategies and appropriate 
digital technologies 

strategies based on arrays and regions and shift of 
thinking from size of group (count of equal groups) to 
number of groups (factor idea) 

Model and represent unit fractions 
including 1/2, 1/4, 1/3, 1/5 and their 
multiples to a complete whole 
(ACMNA058) 

Strongly multiplicative where students engaged in 
equipartitioning strategies to construct their own 
fraction models and representations. Risk: focus on 
the name of parts not the relationship to the whole 

 

No reference to representations of multiplication and division 

Recall multiplication facts up to 10 × 10 
and related division facts (ACMNA075)  

Implies memorisation of facts, unclear as to how 
these are represented (see above). Risk: limited to 
equal groups, count of groups (i.e., ‘traditional tables’ 
representation) 

Develop efficient mental and written 
strategies and use appropriate digital 
technologies for multiplication and for 
division where there is no remainder 
(ACMNA076) 

Potentially supportive of multiplicative thinking if 
strategies based on shift of thinking from size of 
group (count of equal groups) to number of groups 
(factor idea), use of distributive law , etc. Risk: 
Strategies based on repeated addition, count all 
groups 

Investigate equivalent fractions used in 
contexts (ACMNA077) 

Highly multiplicative if explored via equipartitioning 
strategies (e.g., halving, thirding and fifthing) and 
linked to region idea (e.g., thirds by fourths are 
twelfths). Risk: treated as rule-based procedure 

Count by quarters halves and thirds, 
including with mixed numerals. Locate 
and represent these fractions on a 
number line (ACMNA078) 

Locating fractions on an open number line invites the 
use of equipartitioning strategies based on 
benchmarks (e.g., halving, thirding and fifthing , etc.) 
and links to fractions as number idea. Risk: treated 
additively 

Recognise that the place value system 
can be extended to tenths and 
hundredths. Make connections between 
fractions and decimal notation 
(ACMNA079) 

Potential to relate place-value system 
equipartitioning and for each idea (i.e., for each one 
there are 10 tenths), see base 10 system as 
multiplicative. Risk: introduced before students 
understand whole number as multiplicative system 

Recall multiplication facts up to 10 × 10 
and related division facts (ACMNA075)  

Implies memorisation of facts, unclear as to how 
these are represented (see above). Risk: limited to 
equal groups, count of groups (i.e., ‘traditional tables’ 
representation) 

Explore and describe number patterns 
resulting from performing 
multiplication (ACMNA081) 

Potential to shift thinking from count of equal groups 
to factor or scalar idea to support more efficient 
mental strategies (e.g., 4 of anything is double 
double). Risk: treated as repeated addition 

4 

No reference to arrays, regions, Cartesian product, partition or quotition division 
No reference to benchmark percents (50%, 25%, 10% , etc.) 

Identify and describe factors and 
multiples of whole numbers and use 
them to solve problems (ACMNA098) 

Highly supportive of multiplicative thinking if based 
on array, region or area representations of 
multiplication and shift of thinking described above. 
Risk: considered in isolation from representations of 
multiplication 

Solve problems involving multiplication 
of large numbers by one- or two-digit 
numbers using efficient mental, written 
strategies and appropriate digital 
technologies (ACMNA100) 

Highly supportive of multiplicative thinking if based 
on array, region or area representations of 
multiplication and shift of thinking described above. 
Risk: strategies based on/limited to repeated 
addition, count all groups, rote learnt procedures 

Solve problems involving division by a 
one digit number, including those that 
result in a remainder (ACMNA101) 

Highly supportive of multiplicative thinking if based 
on sharing or ‘what do I have to multiply by’ (i.e., 
factor idea) 

Compare and order common unit 
fractions and locate and represent them 
on a number line (ACMNA102) 

Highly supportive of multiplicative thinking if based 
on equipartitioning strategies (e.g., halving, thirding 
or fifthing) and linked to fraction as number idea. 
Risk: treated as a iterative counting exercise 

5 

Recognise that the place value system 
can be extended beyond hundredths 
(ACMNA104) 

Highly supportive of multiplicative thinking if based 
on equipartitioning strategies and for each idea (e.g., 
for each tenth there are 10 hundredths, for each 
hundredth there are 10 thousandths and so on)—this 
involves recognising recursive, exponential nature of 
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the base 10 numeration system. Risk: limited to 
surface features 

Compare, order and represent decimals 
(ACMNA105)  

Representing/locating decimals on a number line 
highly supportive of multiplicative thinking if on 
equipartitioning strategies (e.g., tenthing) and for 
each idea. Risk: this becomes rule based 

Use equivalent number sentences 
involving multiplication and division to 
find unknown quantities (ACMNA121) 

Potentially supportive of multiplicative thinking 
where numbers renamed to support more efficient 
calculation. Risk: this becomes rote procedure 

 

No link between hundredths and percentages 

Identify and describe properties of 
prime, composite, square and 
triangular numbers (ACMNA122) 

Highly supportive of multiplicative thinking if based 
on array, region or area representations of 
multiplication and shift of thinking described above. 
Risk: taught in isolation from representations 

Compare fractions with related 
denominators and locate and represent 
them on a number line 

Highly supportive of multiplicative thinking if based 
on equipartitioning strategies and fraction as 
number idea 

Find a simple fraction of a quantity 
where the result is a whole number, 
with and without digital technologies 
(ACMNA127) 

Highly supportive of multiplicative thinking if related 
to partition division, fractions as operators and/or 
think of multiplication strategy 

Multiply decimals by whole numbers 
and perform divisions by non-zero 
whole numbers where the results are 
terminating decimals, with and without 
digital technologies (ACMNA129) 

Highly supportive of multiplicative thinking if based 
on area or factor representations of multiplication 
and partition division strategies (i.e., sharing and/or 
think of multiplication). Risk: procedures devoid of 
meaning, inability to check reasonableness of 
outcome  

Multiply and divide decimals by powers 
of 10 

Potentially supportive of multiplicative thinking if 
explored in relation to structure of the base 10 system 
of numeration. Risk: Meaningless procedures such as 
‘adding 0”, moving decimal point 

Make connections between equivalent 
fractions, decimals and percentages 
(ACMNA131) 

Highly supportive of multiplicative thinking if based 
on equipartitioning strategies, fraction as number 
idea—First mention of percentages. Risk: 
Meaningless rule-based procedures 

6 

Investigate and calculate percentage 
discounts of 10%, 25% and 50% on sale 
items, with and without digital 
technologies (ACMNA132) 

Supportive of multiplicative relationships if linked to 
equipartitioning strategies (e.g., halving, fifthing), for 
each and fraction as operator ideas and 
multiplication by decimal fractions. Risk: 
Meaningless rule-based procedures, inability to check 
reasonableness of results 

Investigate index notation and 
represent whole numbers as products of 
powers of prime numbers (ACMNA149) 

Highly supportive of multiplicative thinking if linked 
to for each and factor.factor.product ideas 

Investigate and use square roots of 
perfect square numbers (ACMNA150) 

Highly supportive of multiplicative thinking if linked 
to factor idea and think of multiplication strategy 

Apply the associative, commutative and 
distributive laws to aid mental and 
written computation 

First mention of these properties yet used in mental 
computation much earlier and 2 digit by 2 digit 
multiplication in Year 6. Supportive of multiplicative 
thinking where factors used 

Compare fractions using equivalence. 
Locate and represent positive and 
negative fractions and mixed numbers 
on a number line (ACMNA152) 

Highly supportive of multiplicative thinking if based 
on equipartitioning strategies and fraction as 
number idea. Risk: Taught in isolation, meaningless 
rule-based procedures 

Multiply and divide fractions and 
decimals using efficient written 
strategies and digital technologies 
(ACMNA154) 

Supportive of multiplicative thinking if based on 
equipartitioning representations, fraction as 
operator. Risk: Taught in isolation, meaningless rule-
based procedures 

Express one quantity as a fraction of 
another, with and without the use of 
digital technologies 

Highly supportive of multiplicative thinking if linked 
to fraction as quotient idea. Risk: Taught in isolation, 
meaningless rule-based procedures 

7 

Connect fractions, decimals and 
percentages and carry out simple 
conversions (ACMNA157) 

Supportive of multiplicative thinking if linked to 
fraction as quotient idea. Risk: Taught in isolation, 
meaningless rule-based procedures 
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Find percentages of quantities and 
express one quantity as a percentage of 
another, with and without digital 
technologies. (ACMNA158) 

Highly supportive of multiplicative thinking if linked 
to fraction as operator interpretation. Risk: Taught 
in isolation, meaningless rule-based procedures 

Recognise and solve problems involving 
simple ratios (ACMNA173) 

Highly supportive of multiplicative thinking if linked 
to fraction as ratio interpretation. Risk: Taught in 
isolation, meaningless rule-based procedures 

 

Investigate and calculate ‘best buys’, 
with and without digital technologies 
(ACMNA174) 

Highly supportive of multiplicative thinking if seen as 
application of proportional reasoning, related to 
fraction as quotient idea 

Use index notation with numbers to 
establish the index laws with positive 
integral indices and the zero index 
(ACMNA182) 

Requires multiplicative thinking and recognition of 
factor idea. Risk: laws treated in isolation from 
underpinning properties  

Solve problems involving the use of 
percentages, including percentage 
increases and decreases, with and 
without digital technologies 
(ACMNA187) 

Highly supportive of multiplicative thinking if linked 
to fraction as operator interpretation. Risk: Taught 
in isolation, meaningless rule-based procedures 

Solve a range of problems involving 
rates and ratios, with and without 
digital technologies (ACMNA188) 

Highly supportive of multiplicative thinking if linked 
to fraction as ratio. Risk: Taught in isolation, 
meaningless rule-based procedures 

Solve problems involving profit and 
loss, with and without digital 
technologies (ACMNA189) 

This is an application of ACMNA187 

Extend and apply the distributive law to 
the expansion of algebraic expressions 
(ACMNA190) 

Supportive of multiplicative thinking where linked to 
factor.factor.product idea and partitioning (both 
additive and multiplicative) 

8 

Factorise algebraic expressions by 
identifying numerical factors 
(ACMNA191) 

Supportive of multiplicative thinking where linked to 
factor.factor.product idea 

9 

Solve problems involving direct 
proportion. Explore the relationship 
between graphs and equations 
corresponding to simple rate problems 
(ACMNA208)  

Requires multiplicative thinking to be achieved with 
understanding 

 

 


