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PREFACE 

 
 
‘Mathematics: Launching Futures’ was chosen as an appropriate theme for this, the 
24th Biennial Conference of The Australian Association of Mathematics Teachers Inc., 
for several reasons. 
 This will be the first national conference on mathematics education since the advent 
of the Australian Curriculum. The national focus of this curriculum marks the start of a 
new chapter in Australian education and the ways in which mathematics is taught. 
There are also considerations about the support educators will need when 
implementing this curriculum—matters which will be discussed in depth at this 
conference. 
 There has been much public discussion of people’s lack of mathematical knowledge 
as they leave the school system, as well as the low numbers of students studying higher 
level mathematics at school, and even fewer continuing that study at university. This 
has been repeatedly stated as a cause for alarm for many professions, including the 
teaching profession itself, with the number of appropriately qualified mathematics 
teachers at record lows. Mathematics as a discipline can be viewed as the launch pad of 
many careers. 
 Of course, one of the aims of this conference is for educators to share knowledge that 
will help shape their teaching and their future careers, especially those new to the 
teaching profession. Of late, AAMT as an association has begun to look closely at its 
membership and what it can do to encourage new members and support teachers at all 
stages of their careers. Early career teachers and those who are attending their first 
AAMT conference are especially welcome and it is hoped that you find your experiences 
and new contacts beneficial. 
 This conference features a joint day with the 36th Annual Conference of the 
Mathematics Education Research Group of Australasia (MERGA). The joint day aims to 
highlight teacher–researcher collaboration and some of the wonderful outcomes and 
understandings—for teachers and students—that can result when classroom 
practitioners work closely with academics. This is not the first time that this has 
happened at an AAMT conference, and delegates at previous conferences have 
expressed that it is a great opportunity for professional learning. It is hoped that such 
professional collaboration will continue into the future. 
 In short, it is hoped that all delegates—classroom teachers, pre-service teachers, 
researchers and those who work in the various education systems—and others who did 
not attend but read this work post-conference, can learn from each other as we shape 
the future of Australian mathematics education together. 
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Review process 
Presentations at AAMT 2013 were selected in a variety of ways. Keynote and major 
presenters were invited to be part of the conference and to have papers published in 
these proceedings. A call was made for other presentations in the form of either a 
seminar or a workshop. Seminars and workshops were selected as suitable for the 
conference based on the presenters’ submission of a formal abstract and further 
explanation of the proposed presentation.  
 Authors of seminar and workshop proposals approved for presentation at the 
conference were also invited to submit written papers to be included in these 
proceedings. These written papers were reviewed without any author identification 
(blind) by at least two reviewers. Reviewers were chosen by the editors to reflect a 
range of professional settings. Papers that passed the review process have been 
collected in the ‘Research Papers’ section of these proceedings. Papers that were not 
regarded as acceptable as peer-reviewed research but acceptable for publication have 
been included in the ‘Professional Papers’ section.  
 The panel of people to whom papers were sent for review was extensive and the 
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LAUNCHING FUTURES:  
YOU CAN’T DRIVE BY LOOKING  

IN THE REARVIEW MIRROR 

MIKE ASKEW 

Monash University 

mike.askew@monash.edu 

 
It has become a cliché to say we are living in times of great change, that does not 
make it any less true and it does pose challenges for us as mathematics educators. 
In this presentation I focus on the issue how mathematics taught today might best 
support launching learners into an unknown future. I will invite us to step back 
from the day-to-day concerns of how best to cover the curriculum and help learners 
be prepared for short term success (I’m looking at you, NAPLAN) and to consider 
why mathematics is held to be important in the school curriculum and whether it 
still deserves to hold such status (hint: I think it does). But I shall argue that we 
need to pay closer attention to how we teach mathematics (not just what 
mathematics) and the impact this can have on what students learn not only about 
mathematics but also about themselves as learners and citizens, and why this might 
be the best ‘launch pad’ for their futures. 

Introduction 
"The problem of keeping knowledge alive, of preventing it from becoming inert…is the 
central problem of all education.” (Whitehead, 1967 [1929], 5) 
 
It has become a cliché to say we are living in times of great change, but that does not 
make it any less true and the rate of change poses challenges for us as mathematics 
educators. In this paper I explore how mathematics as taught today might best support 
launching learners into an unknown future. In doing so I step back from the day-to-day 
concerns of how best to cover the curriculum and help learners be prepared for short 
term success—important and valid concerns though these are—because alongside these 
concerns is our responsibility to nurture in as many pupils as possible an interest in 
and love of mathematics, not only so that they may go on to continue to study is but 
also so that they become the stewards of mathematics for future generations.  
 While the theme of this conference is launching futures, I am framing thoughts 
around looking forward by looking back to the work of the philosopher of education, 
Alfred North Whitehead. Taking up Whitehead’s challenge of how to keep 
mathematical knowledge alive involves (at least) three questions: 

• How best to teach mathematics for learner success? 
• How best to teach mathematics so that learners believe they can learn 

mathematics? 
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• How best to teach so that learners develop a desire to continue to learn 
mathematics? 

 The bulk of this paper addresses the third question, as that is central to keeping 
mathematical knowledge alive: no amount of attention to raising standards is sufficient 
if the result is to turn off learners. First, however, I look briefly at the other two 
questions. 

How best to teach mathematics for learner success? 
This question is what the majority of books, articles and research papers in 
mathematics education set out to address. Despite this wealth of advice to teachers I 
am not convinced that we will ever have the definitive answer to this question, because 
the nature of teaching is an adaptive challenge, rather than a technical problem 
(Heifetz, Linsky & Grashow, 2009). 
 The difference between these is, as Heifetz and colleagues argues, that we can find 
solutions to technical problems through our current expertise. Technical problems 
involve familiarity with the steps to go through to solve them and as such are rooted in 
a logic of complicated systems: systems with multiple interacting parts, which are 
highly predictable in that a ‘tweak’ to one part of the affect other parts along the logic of 
‘if … then’. Clocks are the archetypal complicated systems. 
 Policy initiatives often treat schools and classrooms as complicated systems and 
hence the teaching and learning of mathematics as a technical problem: that we already 
know from current practices the solution to engaging children and raising standards. 
Such a view has a long history that can be traced back to the curriculum theorist Ralph 
Tyler.  
 Writing around the same time as Whitehead, Tyler, has been described as writing 
one of the most influential books on curriculum thought and practice (Schubert, W. H., 
1986). In ‘Basic Principles of Curriculum and Instruction’ Tyler (1949) raised four 
questions that are still familiar and current:  
1. What educational purposes should schooling seek to attain?  
2. How can learning experiences be selected to be useful in attaining these 

objectives? 
3. How can educational experiences be organised for effective instruction?  
4. How can the effectiveness of learning experiences be evaluated?  
 The Australian Curriculum and NAPLAN may not consciously owe a debt to Tyler, 
but so wide reaching was the influence of his work that one can hear the echoes of it 
down the years.  
 The Tyler Model continues to hold sway through its appeal to belief in the power of a 
prescribed and predictable curriculum, with the accompanying sense of security and 
promotion of ‘standards’ that logically leads to certain classroom practices. Curriculum 
and instruction are technical problems. 
 An alternative is to view mathematics teaching as an adaptive challenge. In contrast 
to technical problems, adaptive challenges require solutions that have yet to be found—
solutions that will be different from current practices, solutions that we may be able to 
imagine. That means trying out new ways to teach and in particular allowing 
pedagogies to emerge rather that imposing them. 
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 Adaptive challenges fit within a theoretical framework of complex systems. Like 
complicated systems, complex systems are made up of many parts acting in relation to 
each other. How complex systems change, however, is not as predictable as in 
complicated systems. Change in complex systems is not random, but it is only with 
hindsight that the chain of cause and effect can possibly be traced. The weather and 
gardens are typical complex systems. In complex systems solutions to adaptive 
challenges have to emerge, they cannot be engineered into being, because complex 
systems have the capacity to learn as they develop. Schools and classrooms are complex 
systems and the sort of teaching that is appropriate for five, ten years time has not yet 
emerged. I return to this issue of emergence later in considering what this might mean 
for teachers and researchers.  
 This does not negate the fact that, literally, tomorrow children across the globe are 
going to go into mathematics lessons. We cannot use pedagogies that have not yet been 
invented to teach them—we can only work with what we have got. We have to work 
with our current knowledge, but that we need to treat that knowledge as ‘conditional’. It 
works to the best of our current knowledge within the current conditions of teaching. 
But we must be cautious of claims for descriptions of current ‘good mathematics 
teaching’ being what is needed in the near, or far, future. 

How best to teach mathematics so that learners believe they 
can learn mathematics? 
We must look beyond teaching that effectively addresses ‘standards’. Any pedagogy, 
including the particular case of mathematics, actually teaches far more than the 
‘content’: students learn more than just mathematics in mathematics lessons. They 
learn a lot about themselves and about their peers and about relationships. What 
students learn about themselves and others directly impacts on the learning of 
mathematics at the same time as their experiences in mathematics lessons itself 
influences this other learning, in particular learning whether or not they are ‘good’ at 
mathematics. 
 Some current practices establish norms about different abilities in mathematics and 
enact these through practices such as sorting pupils into high medium and low groups 
and labelling individuals—below average, gifted and talented, and so forth. Research 
now challenges the long held view that mathematical ability is innate and fixed (Shenk, 
2010). While there will always be natural variation in learners taste and talent for 
mathematics, if mathematical ability is more malleable than we consider it to be then 
many differences in attainment largely come about from social practices, particularly 
how we attribute mathematical ability on the basis of learner attributes that may be 
independent to any real differences. The research Carole Dweck has explored 
extensively the implications of seeing oneself (and others) with either a ‘fixed’ or 
‘growth’ mindset towards ability in mathematics and the advantages of the latter 
(Dweck, 2000). 
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How best to teach mathematics so that learners want to 
continue to learn mathematics? 
As indicated, I take this question as central to keeping mathematical knowledge alive 
and explore it through Whitehead’s tripartite model of learning. He argued that all 
learning goes through three stages: 

• precision,  
• generalisation, 
• romance.  

 In taking this model, I part company with some of Whitehead’s writing suggesting 
that these are three distinct stages that learners pass through in turn. I see them as 
interwoven and iterative, not separate and sequential. While I consider them separately 
here, the reader should bear in mind that they cannot be teased apart, nor that 
attending to one of the three can, in reality, be done independently of the other two. 

Precision 

Precision is the stage most valued by many sections of society and, with mathematics in 
particular, precision is often seen as the main aim of teaching. With our increasingly 
test-oriented society—locally, nationally and globally—precision is highly prized. I am 
not arguing against precision—the precision of mathematics has allowed us many great 
human achievements (and some dubious ones) and doubtless will continue to do so.  
 A ‘litmus test’ question of one’s beliefs about teaching mathematics is “should 
children should learn ‘the tables’ or the ‘standard algorithm’ for, say, long 
multiplication?” But this question assumes that there are two ‘camps’ in mathematics 
education—those that think such things are important (the precision/procedural camp) 
and those that do not (the understanding camp). The evidence is that we need both. 
Precision in certain aspects of maths is important, but on its own does not guarantee 
understanding. On the other hand, understanding is hindered if certain processes take 
up too much working memory, and attention is diverted from thinking about the bigger 
mathematical picture. For example, research evidence shows that success in being 
fluent and precise in basic number calculations in the early years of primary school is 
strongly correlated with later mathematical success (Cowan et al., 2012). That should 
not, however, be taken as an indication that rote learning of precision in basic number 
calculations is the key to promoting later success, but neither should becoming fluent in 
basic number bonds be left to chance on the assumption that children will eventually 
come to be fluent without explicitly attending to it. 
 An emphasis on arriving at precise answers should not be conflated with drilling 
learners in mindless procedures: arriving at correct answers involves choosing methods 
and procedures, and working flexibly depends on the calculation to hand. For example, 
a student might mentally calculate 3004 − 2997 by counting on from 2997 to 3004, or 
by partitioning 3004 into 3000 and 4, and using retrieval of 7 + 3 = 10 to figure out 
that 2997 + 3 = 3000, so the total difference must be 3 + 4 = 7. Applying a similar 
approach to 2005 − 8 (counting on from 8 to 2005 or adding 1992 to 8 and then 
another 5) may not be a sensible approach. Working flexibly would, in this latter case, 
mean counting back, or partitioning 8 into 5 + 3, taking 5 from 2005 and then 
subtracting 3. Reaching a precise answer cannot be separated from awareness of 
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generalisations about the relationship between the numbers and understanding 
subtraction both as ‘taking away’ and ‘finding the difference’. 

Generalisation 

In research I carried out with colleagues at King’s College in London, a sample of 
around 2000 10- and 11-year-olds were told, and had written down in front of them, 
that 86 + 57 = 143. They were then asked a series of calculations all of which could be 
answered using this number fact, for example, 57 + 86, 143 – 86, or 860 + 570. The 
assessment was set up to tune the students into the fact that they were going to be 
answering calculations to which, with a bit of reasoning, they could write down the 
answers without a great deal of calculating.  
 We expected a high percentage, if not almost all children at the end of primary 
school, would to be able to answer such calculations correctly, and just over 90% of our 
sample could write down that 57 + 86 would also be 143. But twenty percent of the 
children in our study could not figure out that 143 − 86 would be 57; a fifth of the 
children who were about to leave primary school and go to secondary school did not 
display appreciation of the inverse relationship between addition and subtraction. I 
suspect those students would experience difficulty with algebra. How do you begin to 
make sense of questions like ‘find x if 3x + 5 = 2x − 4’ if you do not understand inverse 
relationships? And given the time in primary schools spent teaching place value, it was 
worrying that around 25% of our sample could not correctly answer that 860 + 570 
would be 1430. 
 Findings like this suggest that even though there have been moves in the curriculum 
to encourage students to reason about and see generalisations in mathematics many 
learners in primary school are not coming the subject with that frame of mind and are 
coming to expect that every calculation has to be worked out from scratch.  
 Another of Whitehead’s proposals was that education should focus on teaching only 
a few, main, ideas that we “throw these ideas into every combination possible”. In 
mathematics, inverse relationships and place value are certainly ‘main’ or big ideas, but 
we may need to ‘throw’ these into more combinations. Deep learning in mathematics 
hinges on generalising and it is important that we go beyond a focus on whether or not 
children get correct answers in mathematics and to encourage them to explain how 
they arrive at answers and the need to justify their solutions. In doing so they build up 
networks of big ideas, a topic that Di Siemon and colleagues have written about 
(Siemon, Bleckly & Neal, 2012).  
 Coming to understanding mathematical generalisations comes about through the act 
of generalising: it is not enough to simply tell learners that addition and subtraction are 
inverse operations—they have to come to that awareness through exploring operations, 
articulating their insights and repeatedly applying them. In Vygotskian terms, 
development follows learning. In other words, that being able to generalise is not a 
developmental ‘stage’ that children grow into, but that classroom environments and 
tasks that go beyond simple right/wrong solutions provide the ground through which 
children’s generalising develops.  
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Romance 
The Vast and Endless Sea 
If you want to build a ship, don’t drum up the men to gather wood, divide the work and 
give orders. Instead, teach them to yearn for the vast and endless sea. 
 
Antoine de Saint-Exupery (1900–1944), “The Wisdom of the Sands” 

Setting aside the sexist language, Saint-Exupery captures an essence of Romance—the 
sense of yearning. I am not sure how many students I have taught have ended up 
yearning for maths, but there are two elements that I consider contribute to Romance, 
that I think can be bought into being in classrooms: presence and playfulness. 

Presence 

Sitting in on a Grade 6 class recently, a boy was working on finding two different ways 
to fill in the blanks on: 

16 × [ ] = 8 × [ ] 

He had written down 

16 × 4 = 8 × 8 

and 

16 × 2 = 8 × 4 

but then had crossed this second answer out, and was sitting there looking stumped.  
 
MA:  Why have you crossed this one out? 
B:   Because it’s not the same. 
MA:  How do you mean, not the same. 
B:   Well here (pointing to 16 × 4) it equals sixty-four and sixteen times two is thirty-

two, not sixty-four. 
 
 This is a great example of what Eleanor Duckworth calls a ‘wonderful idea’ in her 
claim that intellectual growth comes from everyone, irrespective of their level of 
development, having their own, unique, “wonderful ideas”. “The having of wonderful 
ideas, which I consider the essence of intellectual development, would depend … to an 
overwhelming extent on the occasions for having them” (Duckworth, 2006, p. 181). 
 I think this boy’s response was a wonderful idea as it had not occurred to me that the 
instruction to give two solutions could be interpreted as meaning each solution had to 
come to the same product, and, although that interpretation sets up an impossible 
situation, it showed that the boy was thinking deeply about how to interpret the 
mathematics, and not just plugging in numbers to get a solution. The provision of an 
open-ended challenge had provided the opportunity for this wonderful idea to emerge, 
an opportunity that a more closed question may not have provided. This emergence of 
wonderful ideas is linked to both the teacher and the pupil being ‘present’, both to other 
people and to the mathematics. In this instance, the boy was present to the 
mathematics—actively engaged with thinking about how best to make sense of the 
challenge. Looking back on this, I was aware of how often I have been more present to 
the mathematics, and how I might have pointed out the boy that his answer was fine, 
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that 16 × 2 was the same as 8 × 4, instead of being present to him and his ideas and so 

being able to go on and have a conversation about what ‘two different solutions’ might 
mean.  
 The writer and therapist Stephen Grosz (2013) describes seeing the quality of 
presence in watching Charlotte Stiglitz, an eighty-year-old remedial reading teacher, 
engage with a four-year-old who was drawing: 

When he stopped and looked up at her—perhaps expecting praise—she smiled and said, 
‘There is a lot of blue in your picture.’ He replied, ‘It’s the pond near my grandmother’s 
house—there is a bridge.’ He picked up a brown crayon, and said, ‘I’ll show you.’ 
Unhurried, she talked to the child, but more importantly she observed, she listened. She 
was present. (Grosz, 2013, p. 21) 

 Presence, Grosz argues, helps build children’s confidence through indicating that 
they are worthy of the observer’s thoughts and attention. That we have a desire—a 
yearning—not only to understand but also to be understood. 
 I still regularly teach in schools and it is part of my practice that problem-solving 
lessons end with some children, carefully selected, coming to the front to explain their 
solutions to the class. Over time, I can see the learners’ grow in confidence and in their 
engagement with the mathematics. I think this is down, in part, to the old saw that you 
never really understand anything until you’ve taught it, but I also think it satisfies this 
desire to be understood. 
 I also work with classes on what it really means to listen to someone-else’s 
explanation, through inviting other learners to re-explain what they heard, and to check 
if they are correct with the learner giving the explanation, not with me, the teacher. 
Everyone is thus encouraged to be ‘present’ with that particular learner and the feeling 
that the others in the class are trying to understand them is, I think, more powerful for 
learning than praise for right answers. 
 The core of Duckworth’s pedagogical philosophy is “to listen, to have our learners 
tell us their thoughts” (Duckworth, 2006, p. 181) which requires treating the content as 
“explorable, and the pedagogy asks the students to express their thoughts about it” 
(Duckworth, 2006, p. 261). Such a pedagogy of listening challenges teaching 
mathematics based on direct instruction, whereby the teacher models what to do and 
learners have to replicate this.  
 In a similar vein, Zhang Hua (2012) writes of the importance of establishing a 
“listening” pedagogy at the centre of education, through teachers’ listening and the 
mutual listening between teachers and learners, and among learners. Doing so 
establishing learning as arising from cooperatively creating knowledge. But over and 
above that, it makes ‘ “good listeners” i.e., persons with freedom as the aim of 
education, who integrate morality and creativity.’ (p. 57)  
 Being present is similar to Ellen Langer’s concept of being mindful in learning 
(1997). Mindful is a term redolent with overtones of Zen and meditation but Langer 
uses it to mean learning with awareness and of being ‘mindful’ of the nature of the 
knowledge in the sense of not simply taking it as unquestioned givens. A key element of 
being mindful, Langer argues, is an awareness of the conditionality of much knowledge. 
Treating knowledge as conditional—that it holds under certain conditions—makes, she 
argues, for more powerful learning experiences. For example, in one of her experiments 
Langer presented images of ambiguous pictures to two groups of high school students’.  
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 “We presented the pictures either conditionally (‘This could be …’ or with absolute 
language (‘This is …’) and asked the students to remember them. Tests of recall and 
recognition of the objects in a new context revealed that conditional learning resulted 
in better memory.” (Langer 1997, p. 80) 
 But isn’t most of mathematics absolute and not open to being conditional? Children 
have to know that 2 + 2 = 4 and not think that it could be 5 or a cabbage. Well, yes and 
no. Pour two glasses of water into a jug, followed by another two and you don’t end up 
with four glasses of water. More seriously perhaps, take an example like, what ‘could’ be 
the answer to 13 ÷ 4? Three, three remainder one, three and a quarter and four could 
all be sensible answers depending on whether one is considering  

• How many tables for bridge would thirteen card-players need? 
• What happens when putting thirteen apples into bags of four? 
• How much toast does each of four hungry children if they share 13 slices fairly 
• How many taxis (each carrying four people) do thirteen travellers need to book? 

Playfulness 

Many mathematicians and physicists talk of adopting a playful state of mind in 
thinking about their disciplines. Einstein, for example, described his insights as arising 
from “combinatorial play,” and the role that playfully imagining racing after and 
catching a beam of light played in his development of the theory of relativity.  
 Teachers who encourage a playful approach to the mathematics report that learners 
don’t want to stop when the lesson ends, they want to continue to explore the ideas 
being played with. Adopting playful approaches facilitates learning, creativity, and 
problem solving. They are inhibited by evaluation or expectation of rewards.  
 I agree with Peter Gray’s assertion that ‘In all of us, the capacity for abstract, 
hypothetical thinking depends on our ability to imagine situations we haven’t actually 
experienced and to reason logically based on those imagined situations. This is a skill 
every normal child exercises regularly in play.’ (Gray, 2013 p. 140). The whole of 
mathematics is predicated on ‘abstract, hypothetical thinking’ and arriving at 
mathematical generalisations means reasoning about imagined situations.  
 Adopting a playful approach towards learning mathematics is that encourages a free 
exchange of ideas—play promotes dialogue rather than discussion. Dialogue means that 
students engage with the multiple, connected, senses of mathematics made by others in 
the community—leading to growth in collective meaning making. While discussion is 
often characterised by holding tight to one’s position—trying to establish that one’s 
ideas are correct at the expense, sometimes, of others ideas—dialogue has the ideas at 
the centre, not those persons putting forward the ideas. Playfulness promotes a 
mathematics-centred classroom, a classroom where ideas are welcomed, held up to be 
examined, built upon and refined. It is through dialogue and playing with ideas that 
depth of understanding comes about in the mathematics.  
 It is through play that we discover our talents and interests. I am not suggesting that 
play is a panacea for students’ aversion to mathematics, nor that play will turn everyone 
on to mathematics, but play is likely to help more students find that they have a taste 
and talent for mathematics and that they want to continue to be a player.  
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Again, the benefits of dialogue may extend beyond simply improving standards in 
mathematics. As Robin Alexander point out, dialogue is at the heart of developing 
caring learners: 

Dialogue requires willingness and skill to engage with minds, ideas and ways of thinking 
other than our own; it involves the ability to question, listen, reflect, reason, explain, 
speculate and explore ideas; to analyse problems, frame hypotheses, and develop 
solutions; … Dialogue within the classroom lays the foundations not just of successful 
learning, but also of social cohesion, active citizenship and the good society. (Alexander, 
2006) 

 Playfulness is not the same as ‘fun’. For me, tickling, roller coasters and candy floss 
are fun—short lived, engineered by someone else and leave you feeling somewhat 
nauseous. Playfulness is more of an internal attitude. Fun may be a by-product of 
playfulness but not the starting point. The laughter of playfulness is of a different 
quality to the laughter of fun, which sometimes verges on the hysterical. 
 Playfulness promotes a mathematics-centred classroom where ideas are welcomed 
held up to be examined, built upon and refined. Playing with ideas brings about depth 
of understanding the mathematics. Take an example like: 

12 + 15 = [ ] + 14 

 Precision involves adding 12 and 15, figuring out what to add to 14 to make 27. To 
move towards generalisation, learners could be asked to articulate what these equations 
are all examples of: 

10 + 12 = 11 + 11 
27 + 24 = 26 + 25 
48 + 37 = 50 + 35 

 A learner may notice that these are all examples of compensation—that increasing 
one number in a sum has to be compensated by decreasing the other by an equivalent 
amount if the sum is to remain the same. And the noticing may stop at that.  
 A playful approach however would go beyond this and ask questions like: 

Does this always work? 

 4657 + 3458 = 4660 + 3455? 

 56.75 + 34.75 = 57 + 34.5? 

What about three addends? 

Subtraction? 

Multiplication? 

The emergence of new pedagogies 
Finally I want to return to the question of how we—teachers, researchers—might go 
forward with new pedagogies being treated as adapted problems the solutions for 
which need to emerge. Davis and Simmt (2003) suggest that there are five conditions 
necessary for emergence: 

• Diversity 
• Redundancy 
• Enabling constraints 
• Neighbour interactions 
• Distributed control 
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 How might these apply to us as communities of practice developing mathematics 
teaching? 
 Diversity means there needs to be variation amongst the participants, to provide the 
possibilities for novel responses. If all our teaching become homogenised then the 
chance for new practices to emerge is reduced. We saw this in a five-year study of the 
introduction of the national numeracy strategy in England. Classroom observations 
before the introduction of the strategy revealed a wealth of practices, which could 
provide rich opportunities for teachers to share, debate and build on—to have a 
dialogue about. After the strategy was introduced, virtually all the lessons had the same 
‘three part’ structure, thus reducing the opportunities for innovation. 
 Redundancy is the other side of the diversity coin: members of a community have to 
have sufficient common ground, rules and assumptions to be able to work together. 
Davis and Simmt suggest that for emergence of new ideas, redundancy is helpfully 
thought about in terms of proscription—what we do not do round here—rather than 
prescription—we only do it this way. 
 Enabling constraints sounds like an oxymoron but these provide focus to activity 
whilst still allowing for diversity. For example, exploring ways in which students have 
to work in pairs on a problem imposes a constraint (paired work) that enables ways of 
working to emerge. 
 Neighbour interactions means more than simply teachers working together. In 
schools and networks of schools it means the sharing of ideas, hunches, questions, 
records of teaching practices. It means having more dialogue about the outcomes of 
teaching, the evidence for these and what we value, than planning the inputs of 
teaching.  
 Distributed control is probably the one area that most challenges current trends—
that increased centralization of curriculum and testing may militate against emergence 
of new pedagogy. Local, distributed control is essential; else the dangers that Paolo 
Freire (1996) warns of may emerge: “Leaders who do not act dialogically, but insist on 
imposing their decisions, do not organize the people—they manipulate them. They do 
not liberate, nor are they liberated: they oppress.”  
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A TIME TO REFLECT BEFORE WE LAUNCH FORWARD 

KATHRYN PALMER  

Melton Network Numeracy Coach 
Numeracy consultant: Every Child Counts Numeracy Consultant 

palmer.kathryn.k@edumail.vic.gov.au 

 
Reflection, or consciously thinking about our experiences, is the key to powerful 
learning. Reflection allows us to analyse our experiences, make informed changes 
based on our mistakes, maintain successful practices, and build upon or modify our 
past understandings based on new and emerging knowledge. This paper describes 
my journey through education in Victoria and provides insights into the elements I 
have identified as integral to successful mathematics education as we launch into 
the future. 

Introduction 
As teachers we are more than just educators, we also become the best “thieves”, 
“samplers” and “borrowers”. Much of our growth stems from looking at an idea, 
resource and activity then using our professional judgement and knowledge to adapt it 
to suit the students in our class, the school we’re working in or for the professional 
learning of teachers. We grow from this culture of sharing: the sharing of ideas, 
research and enthusiasm for our endeavour to provide our students and teachers with 
the best of Mathematics Education.  
 I have been extremely fortunate over my teaching career to have participated in 
some valuable numeracy projects and had the privilege of working and learning from a 
community of “dedicated sharers”.  
 In this paper I will discuss the projects and programs that have most strongly 
influenced the way in which I communicate mathematics: the Teaching and Learning 
Coaching Initiative, Implementing structured problem-solving mathematics lessons 
through Japanese Lesson Study and specific programs including YuMi Deadly Maths 
and Back to Front Maths (Problem-based Maths).  

Teaching and learning coaching initiative 
In 2007, the Department of Education and Early Childhood Development (DEECD) 
worked extensively with Professor Richard Elmore on evaluating the School 
Improvement Practices in Victorian Government schools. Elmore (2007) noted that 
human investment was the key strength of the education system in Victoria and 
suggested that teachers should view their teaching practice as one in which new and 
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powerful ideas are public goods, rather than private practice. Teachers should be 
exposed to coaching and mentoring others as early as possible in their careers. 
 In 2009 I was one of 200 teaching and learning coaches seconded to the Teaching 
and Learning Coaches Initiative and I commenced working in the Western 
Metropolitan Region as part of the school improvement team. The initiative was 
underpinned by the key understanding that student achievement is determined to a 
significant extent by the knowledge and skills of teachers in individual classrooms. 
 The aims of the initiative were to improve: 

• student learning outcomes, especially in the areas of literacy, mathematics and/or 
science, for students in identified schools; 

• teacher knowledge and skills related to effective literacy, mathematics and 
science teaching; and 

• teacher capacity in the use of ICT, particularly for online curriculum planning, 
assessment and delivery in preparation for the ultranet school capacity to support 
improved student learning outcomes (DEECD, 2013). 

 The purpose and intention was to provide intensive assistance to identified schools 
to bring about changes in classroom practices necessary to improve student outcomes 
and build teacher capacity. Six key elements emerged as the ongoing focus for the 
coaches. The elements were: 

• building professional relationships within the schools;  
• building teacher capacity to establish priorities, analyse student results, measure 

student progress and use collected data purposefully; 
• improving the quality of learning and teaching through purposeful instruction by 

modelling, observing and providing feedback; 
• providing substantive conversations with teachers to elicit goals, prompt inquiry 

and support reflective practice; 
• developing school improvement by working with the school leadership team and 

professional learning teams; and 
• continuing one’s own self development.  

 This represented a significant change in focus for school improvement policy to one 
that more directly supported teachers within the classroom and shifted the onus of 
accountability to the individual. For schools the rationale and incentive for teacher 
coaching was based on research that increasing teacher capacity had the most direct 
impact on improving student achievement (Hattie, 2003). 
 Coaching offers differentiation of professional learning for teachers within schools 
and recognises teachers are at different stages of their careers, and possessing varied 
levels of knowledge and skill. It successfully overcomes the difficulty of external 
professional learning transferring into their classroom. With many coaching models to 
choose from, the region I was working in adopted the Gradual Release of Responsibility 
framework. In this framework, the responsibility for the new learning in this case 
gradually shifts from the coach to the teacher who is being coached. This shift leads to 
the embedding and sustaining of change by the classroom teacher. 
 Teachers in primary schools require a deep understanding of mathematics for 
teaching and this is a key component in improving student learning outcomes (Hill, 
Rowan & Ball, 2005). My coaching has helped me to identify a common element that is 
fundamental for successful teaching in mathematics; teacher content knowledge, and 
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the associated understanding of the continuum of learning that this provides. Where 
teacher content knowledge is poor, it stands to reason that so too is student learning. 
Developing both the practical and theoretical aspects through coaching leads to 
powerful gains for all stakeholders. It is widely accepted that teachers of mathematics 
require appropriate strength in both content and pedagogical content knowledge. In my 
role I am trying to address this issue by offering timely professional learning to teachers 
around a specific key mathematical idea. The purpose of these sessions is to give 
teachers some valuable kinaesthetic activities while building their own content 
knowledge and highlighting links to class management and organisation ideas. 
 Whilst initially many teachers viewed coaches suspiciously and as an inconvenience, 
this soon changed as they recognised the value to themselves and the children, and 
most schools across the region employed their own School Based Coaches in both 
Literacy and Numeracy. My role as a regional coach became that of the main resource 
for the school based numeracy coaches. At the end of 2011 any lapsing government 
projects were not re-funded and unfortunately the coaching initiative was one of these. 
The network that I was working in had pooled their National Partnership Funding to 
support school improvement and to distribute resources. In 2012 the network funded 
me to continue the work as Network Numeracy Coach for the 22 schools within the 
network. As a result my role within the network allows teachers to work collaboratively 
and engage in reflective practices together. There has been a cultural change where 
professional learning is embedded into all schools I work with. The model I have 
developed within my network has been to divide School Based Coaches into small 
working groups, who meet regularly to achieve a specific goal. As the network is 
extremely diverse (with P–9, primary, secondary and small rural schools) this model 
allows me to meet the needs of all schools I’m working with and supports a collective 
approach.  
 I am extremely passionate about my profession and everyday enjoy the challenges 
my job. Coaching has allowed me to focus on my greatest passion: the teaching of 
mathematics. I wouldn’t say I’m a great a mathematician (I am not) but I am a good 
coach. In my position I have the rare opportunity of going into a school and working 
closely with teachers and leadership teams. I am a critical observer who isn’t involved 
in the politics of the everyday running of the school and therefore can make 
suggestions. Building relationships is a crucial component of my work. Teaching is a 
very social occupation, interacting with students, parents, teachers and the wider 
community. Coaching can be an isolated position and for me the rewards come when 
I’m working with a teacher who makes the ideas that I had shared with them previously 
their own. When they are so excited to see me the next time I’m in their school to share 
something that worked well, that enthusiasm becomes infectious.  
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Implementing structured problem-solving mathematics lessons 
through Japanese Lesson Study 
Lesson Study is an ongoing, collaborative, professional development process that was 
developed in Japan. Teachers systematically examine their practice in order to become 
more effective instructors. The Trends in International Mathematics and Science 
Study (TIMSS) identified Lesson Study as a powerful, ongoing process for improving 
the quality of teaching in mathematics. (Stigler & Hiebert, 1999). 
 Lesson Study involves a number of steps. 

• Teachers select a research theme.  
This theme focuses on a broad research question regarding their students that 
involves skills or attitudes they would like to foster.  

• The research team selects a goal and a unit of study on which to focus.  
They research their students’ abilities and needs within this unit of study. The 
team researches and shares “best practice” ways to teach this.  

• The team creates the lesson.  
Teachers select a lesson within the unit to develop, and follow an established 
lesson plan template. This template focuses on how the lesson fits within the 
broader school curriculum, linking the lesson topic and skills to previously 
learned content, and to content that will be learned in future grades. This lesson 
plan template also focuses on ways to assess student thinking during the lesson. 

• The lesson is taught by a member of the group and observed by the other 
members, as well as other teachers in the school and usually some outsiders. The 
focus of the observation is on student thinking not on the teacher’s abilities. 

• The group then gets together to discuss the lesson and their observations.  
This is usually done on the same day. They evaluate the components of the lesson. 

– Who was the lesson just right for? 
– Who was too challenged? 
– Who was under challenged? 
– What would we do differently next time?  
– What are our next teaching steps for these students?  

Revisions are made to the lesson, based on these observations and analysis, and 
another member of the group may possibly be selected to teach the lesson again. 
This experience can lead to valuable insight into student thinking, strengths and 
weaknesses. 

• At the end of this process, the group may produce a report that outlines what they 
learned in regards to their research theme and goal. 

 One of the fundamental elements of Lesson Study is that it is an ongoing process. 
The process focuses on the key actions of collaborating, planning, teaching, observing, 
reflecting and revising. 
 All lessons are informed by research and pre-reading. The team of teachers share the 
planning and responsibility of the lesson. The team matches the lesson to their students 
and agrees on roles for the lesson.  
 I was fortunate to be able to attend the IMPULS Lesson Study Immersion Program 
in Tokyo, Japan this year as a result of my involvement in the Deakin University 
Implementing structured problem-solving mathematics lessons through lesson study 
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project over the past year. The professional learning of teachers is an ongoing process 
of knowledge building and skill development in effective teaching practice (NPEAT, 
2003). This project became the vehicle to build teacher pedogogical content knowledge. 
The collaboration between the schools and teachers involved, as well as the support 
from both our university collegues at Deakin and the network, all resulted in teachers 
involved being more reflective of their practice. A highlight of the project was watching 
the confidence of the teachers in their teaching of mathematics build over the 12 
months and being seen in their own schools as leaders of numeracy.  

Influential programs 
Numerous mathematics programs, texts and support materials emerge, seemingly 
constantly. One of the challenges faced by teachers is to select programs that will work 
successfully for their students and for themselves. I found two programs, YuMi Deadly 
Maths and Back to Front Maths, particularly useful for creating connections and 
encouraging genuine student dialogue.  

YuMi Deadly Maths 

In 2010 I was invited by the Sunshine/Deer Park Network to attend the YuMi Summit 
at Queensland University of Technology as a critical friend, to offer insights and help 
evaluate whether this project would be beneficial to the students in our schools. The 
summit was an opportunity for schools involved in the project to professionally engage, 
share and showcase their YuMi Deadly Maths experiences and journeys with 
colleagues.  

“YuMi” is a Torres Strait Islander Creole word meaning “you and me” but is used with 
permission in this project to mean working together as a community for the betterment of 
education for all. “Deadly” is an Aboriginal word used to mean smart, in terms of being 
the best one can be in learning and life. (QUT 2010) 

The YuMi Deadly Maths Program is based on two imperatives: first, that mathematics 
can empower all people’s lives if understood as a conceptual structure, life-describing 
language and problem-solving tool; and second, that all people can excel in 
mathematics if taught kinaesthetically, contextually, with respect and with high 
expectations. It centres around a framework focussing on Reality, Abstraction, 
Mathematics, and Reflection (RAMR). 

Reality 

• Ensure existing knowledge prerequisite to the idea is known.  
• Construct kinaesthetic activities that introduce the idea (and are relevant in terms 

of local experience).  

 Abstraction 

• Develop a sequence of representational activities (physical-virtual-pictorial-
language-symbols) that develop meaning for the mathematical idea.  

• Develop two-way connections between reality, representational activities, and 
mental models through body  hand  mind activities.  

• Allow opportunities to create own representations, including language and 
symbols.  
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Mathematics 

• Enable students to appropriate and understand the formal language and symbols 
for the mathematical idea.  

• Facilitate students’ practice to become familiar with all aspects of the idea.  
• Construct activities to connect the idea to other mathematical ideas.  

Reflection 

• Set problems that apply the idea back to reality.  
• Lead discussion of the idea in terms of reality to enable students to validate and 

justify their own knowledge.  
• Organise activities so that students can extend the idea (use reflective strategies—

being flexible, generalising, reversing, and changing parameters).  
 
 The project has involved 12 schools in Victoria being trained using a ‘train the 
trainer’ and research based models. My role has been to support trained schools and 
facilitate a professional learning team with all trained schools to continue the learning 
and ongoing implementation. In 2011 I accompanied six schools from Victoria to the 
sharing summit in Brisbane. I was able to highlight the network approach to 
implementing the program into Victoria. In May this year I coordinated all schools in 
the project to showcase their learning and highlight best practice with delegates from 
schools not involved in the project at the Victorian sharing summit. 
 The YuMi Deadly Maths project identified key elements that I believe to be 
important to maths education. The train the trainer model and research based 
professional learning supported the need to improve teacher pedagogical content 
knowledge. The ideas shared where kinaesthetic and engaging to both the teachers and 
students, but to me the “aha” moment came when I saw children in Queensland doing 
the abstraction component of the RAMR framework. If an idea can be represented in a 
diagram, table or graph then it could be modelled kinaesthetically and then students 
make their own representation of where they were in the reality with symbols and 
language. In my experience of observing many schools across Victoria, the abstraction 
component was the missing link, what we weren’t doing. And yet it was so simple. For 
example, in a class we get students to use their bodies to get into ‘groups of 3 or 4’ and 
discuss how many groups have been made. If we then we don’t get them to draw or 
represent what that looked like, we jump straight from the reality to the maths. We 
expect somehow as a child sits back at their table that they have made the link from the 
engaging ‘groups of’ activity to the multiplication worksheet in front of them. 

Back to Front Maths 

Last year I received a phone call from a numeracy coach I had met in Queensland 
telling me she had just attended an extremely valuable professional learning. With my 
passion for great maths teaching I was inspired to find out more and discovered Back 
to Front Maths (Kennedy, 2010). It is a problem-based teaching resource and contains 
a series of novel or unfamiliar problems that are used to introduce new topics, uncover 
student misconceptions, stimulate interest and experimentation and ultimately lead to 
building new mathematical understanding in students. 
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 I am extremely fortunate that I get to observe numerous problem solving lessons in 
various settings. A constant issue during the lesson introduction is that the teacher tells 
the students how to get the answer and they lose the opportunity for students to 
develop their own capacity for logical reasoning and analytical thought. I try to 
highlight to teachers that I work with “never tell a student something they can find out 
for themselves”. Back to Front Maths supports teachers to start asking students to 
solve a problem that they don’t yet know how to solve. This requires the students to 
think mathematically, and experiment to try and work out a solution. Next, they look 
for student misconceptions (where the student has a fundamental misunderstanding of 
a concept), and help the students to analyse their ideas to see if they really work. When 
students self-correct their misconceptions, their mathematical understanding deepens 
and they learn concepts far more quickly (Kennedy, 2010). 
 Finally, and possibly most importantly, the teacher’s primary role is one of asking 
really searching questions that encourage students to think deeply about a problem, 
access their prior knowledge about it, experiment with different ideas and then analyse 
how well these work when applied. Teachers help students to focus on the fundamental 
principles and patterns in mathematics, therefore enabling deep understanding and 
developing less need for repetition and memorisation. 
 As educators, “we understand something if we see how it is related or connected to 
other things we know.” (Heibert et al., 1997) Students formulate and solve problems 
when they use mathematics to represent unfamiliar or meaningful situations, when 
they design investigations and plan their approaches, when they apply their existing 
strategies to seek solutions, and when they verify that their answers are indeed 
reasonable. When students are told rather than being able to explore they tend to 
develop a fragmented set of rules and procedures that do not represent what the 
teacher intended (Williams, 2010). 
 At a facilitators training with Tierney Kenney, the mastermind behind Back to Front 
Maths, I observed teachers having those ‘aha’ moments—calling in unison “we tell our 
students too much”. The training is unique. Within the first hour of a two day training, 
teachers observe a Back to Front lesson in a classroom. By the completion of the lesson 
the observers have many insights into what these students know and don’t know; the 
purpose of the problem based task is to identify student misconceptions. The second 
day of training involves participants trialing a problem based lesson with students they 
have no prior knowledge of and in a school which isn’t their own. This form of 
professional learning gives participants a rare opportunity to trial their learnings and 
reflect on their own practice with the assistance of the facilitator and other participants.  

Conclusion 
Reflecting on this range of diverse and high quality projects has allowed me to isolate 
the key elements they have in common, to develop purposeful and genuinely effective 
maths teaching. The Gonski Review (2012) highlights the need for extra specialist 
teachers in the area of literacy and numeracy, and a need to support teachers to sift 
through the numerous resources and projects available. I believe specialist coaching in 
mathematics is vital if we are to build teacher capacity. Lessons need to be engaging 
and challenging whilst making connections to prior concepts and student interests. I 
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believe these projects have gained momentum because I was a network resource to 
coach and mentor teachers at the point of need to address issues and support trials. 
 As we launch to the future I can see the importance of not “throwing out the old and 
in with the new”. As teachers begin to implement an Australian Curriculum, they 
should take with them best practice and keep borrowing and trialling those elements 
that engage our students, by making links to previous learning, other contexts and to 
experiences inside and outside the classroom. It is my belief that if we are to improve 
the quality of teaching and learning in mathematics, we need to be part of a community 
that shares ideas. Therefore we don’t need to start from scratch ourselves but can learn 
from the teacher next door or the teacher on the other side of the world or the 
international guru. As Isaac Newton wrote (quoting an earlier scholar), “we can stand 
on the shoulders of giants”.  
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Lesson study is a Japanese approach to improve teaching and learning 
mathematics through a particular form of activity by a group of teachers. It 
provides teachers with key learning opportunities in working collaboratively with 
their colleagues to study subject matter, students’ thinking and learning, and how 
to change classroom instruction. By participating in lesson study teachers learn 
new visions in education and immutable values of school subjects, with and from 
their experienced colleagues. This paper describes how Japanese mathematics 
teachers learn these key elements for improving their teaching through continuous 
participations in lesson study.  

Introduction  
Becoming a teacher in the Japanese educational system means not only to finish a 
teacher preparation course and to pass an examination to be recruited, but also to learn 
more about subject matters and teachers’ key roles in teaching and learning of the 
subjects, informally with and from their colleagues (Shimizu, 2010). Beginning 
teachers in Japan are expected to keep learning the subject matter and teachers’ key 
roles through informal interactions with their experienced colleagues, in addition to a 
formal educational system. Experienced teachers are also expected to develop their 
teaching competence gradually and continuously throughout their career. From this 
perspective, learning to teach in the classroom is regarded as a lifelong process, which 
is closely tied to participating in social and cultural activities related to the community 
of teachers (Stigler & Hiebert, 1999).  
 Lesson study, which is a literal translation of ‘jugyo kenkyu’, means a Japanese 
approach to develop and maintain quality classroom instruction through a particular 
form of activity by a group of teachers (Fernandez & Yoshida, 2004; Shimizu, 2002). 
Lesson study serves as an approach to professional development whereby a group of 
teachers collaboratively develop and conduct lessons to be observed: examining the 
subject matter to be taught, how their students think and learn the particular topic in 
the classroom, how to incorporate new methods for improving classroom instruction, 
and so on. The activity of lesson study includes planning and implementing the 
‘research lesson’ as a core of the whole activity, followed by a post-lesson discussion 
and reflection by participants, with revisions of conducted lessons. Lesson study raises 
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opportunities for teachers to learn new visions on educational movements and 
curriculum changes and immutable values of school subjects, with and from their 
experienced colleagues, as well as some practical ideas and methods to be used in the 
classroom.  
 This paper describes how Japanese mathematics teachers learn key elements for 
improving classroom instruction by participating in lesson study, and how they utilise 
the learning opportunity for the development of their capabilities as teachers. Key 
characteristics of what is learned by teachers by participating in lesson study are 
described in three different levels to illustrate the mechanism and impact of it; the 
values in education pursued in the long term, pedagogical terms shared among 
teachers, and teachers’ classroom actions recommended by and shared among 
Japanese teachers. The author concludes the paper by raising the issues in adoption of 
the approach to other contexts, and points out the challenges to be resolved in research 
and practice to pursue its possibilities. 

The origin and the current state of lesson study  
Although Fernandez and Yoshida (2004) mention that the origin of lesson study can be 
traced back to the early 1890s, it seems to have appeared earlier. At the beginning of 
the modern era, the Japanese government established normal schools, where teachers 
set the goals of the lesson, prepared experimental lessons, and conducted those lessons 
in actual classrooms while other teachers were observing them. In the late 1890s, 
teachers at elementary schools affiliated to the normal schools started to study lessons 
by observing and examining them critically. Makinae (2010) argues that the origin of 
Japanese lesson study was influenced during the late 1880’s by U.S. books for 
educators which introduced new approaches to teach. He points out that a book by 
Sheldon (1862) describes methods to learn about new teaching approaches, called 
‘criticism lesson’ and ‘model lesson’. This may be the beginning of Japanese lesson 
study. In fact, Inagaki (1995) argues that ‘criticism lesson’ was already practiced among 
elementary schools affiliated to the normal schools in Japan as early as the late 1890s. 
Teacher conferences utilising criticism lessons were conducted by local school districts 
in the early 1900s. Some of these conferences were already called ‘lesson study 
conferences’, or jugyo-kenkyu-kai in Japanese (Makinae, 2010). In this sense, lesson 
study has a history of more than a century. 
 In the early stages of development of Japanese lesson study, ‘criticism lesson’ 
(Sheldon, 1862) included a particular function of studying lessons, carefully examining 
the effectiveness of teaching, and publicly discussing ways to improve teaching and 
learning. The term ‘research lesson’, or kenkyu-jyugyo, might come from this particular 
function of lesson study with its major focus on producing a new idea, or testing a 
hypothesis in the form of an operationalised teaching method or teaching materials. On 
the other hand, ‘model lesson’ (Sheldon, 1862) included another function of studying 
lessons; demonstrating or showcasing exemplary lessons, or presenting new 
approaches for teaching. For this purpose, the lesson should be carefully planned and 
based on research conducted by a teacher or a group of teachers. Participants can 
observe and discuss actual lessons with a hypothesis, instead of simply reading papers 
or handouts that describe the results of the study. The two different functions of lesson 



SHIMIZU 

MATHEMATICS: LAUNCHING FUTURES 
24 

study—’criticism lesson’ and ‘model lesson’—can be the original model of a variety of 
lesson study practiced around the county. 
 Despite the long history of lesson study in their own country, Japanese mathematics 
educators, and researchers in other areas have not been much interested in studying 
lesson study itself until recently. After the publication of The Teaching Gap (Stigler & 
Hiebert, 1999), followed by a Japanese translation (Minato, 2002), Japanese educators, 
often deeply involved in lesson study, ‘found’ the importance of this particular cultural 
activity. 
 Today, lesson study takes place in various institutions and contexts (Lewis & 
Tsuchida, 1998; Shimizu, 2002). Pre-service teacher training programs at universities 
and colleges, for example, include lesson study as a crucial and challenging part in the 
final week of student teaching practice, which usually lasts three or four weeks. In-
service teachers also have opportunities to participate, held within their school (konai-
kenshu), outside their school but in the same school district or city, at the level of 
prefecture, and even at the national level for several objectives. Teachers at public 
schools may just participate in lesson study in their school to develop their teaching 
skills, since the school is their working place. Other teachers may play the major roles 
in planning and conducting research lesson, for testing critically their hypothesis in the 
use of particular method for teaching mathematics. Teachers at university-affiliated 
schools that have a mission to developing a new approach to teaching, often open their 
lesson study meeting for demonstrating an approach or new teaching materials they 
have developed. Thus, we can still see two major functions of lesson study that seems to 
have arisen from the original form of it.  

Key elements of lesson study  

Components and the cycle of lesson study 

Lesson study is a problem solving process whereby a group of teachers, in many cases a 
school as a whole, work on the problem as identified, with research questions related to 
the particular theme important to the group. The theme can relate to the examination 
of the ways to teach a newly introduced content or to the use of new teaching materials 
in relation to the revision of national curriculum guidelines, or to the way to enhance 
students learning a certain difficult topic in mathematics, such as common fractions or 
ratio.  
 Thus, the first step of lesson study is defining the problem. In some cases, teachers 
themselves pose a problem to solve, such as how to introduce a concept of common 
fractions, or an effective way to motivate students to learn mathematics. Second, 
planning the lesson follows after the problem is defined. The groups of teachers 
collaboratively develop a lesson plan in this context. A lesson plan typically includes 
analyses of the task to be presented, and of the mathematical connections both between 
the current topic and previous topics (and forthcoming ones in some cases) and within 
the topic. It identifies anticipated students’ approaches to the task, and the planned 
instructional activities based on them. The third step is to implement the research 
lesson in which the teacher teaches the planned lesson, with colleagues as observers. In 
most cases, the observers take a detailed record of teacher and students utterances to 
use in the post-lesson discussion. Evaluation of the lesson follows in a post-lesson 
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discussion, focussing on such issues as the appropriateness of the tasks presented, 
students’ responses to the tasks, the roles of teachers questioning and so on. Based on 
the evaluation of the lesson, a revised lesson plan is developed to try the lesson again. 
The entire process forms a cycle of lesson study (Table 1, Shimizu, 2002). 

Table 1. Key components of lesson study. 

Before - Deciding a theme 
- Selecting a particular unit and topic for the study 
- Writing a lesson plan (analysing the topic to be taught, assessing students’ 

learning, examining the task to be posed, considering teacher’s roles, etc.) 
- Discussing and revising the lesson plan(s) 
- Trying out the lesson by other teachers or in other classes 
- Reflecting on the lesson and revising the plan 

During - Teaching/observing the lesson 
- Recording what the teacher and students said, how students worked on the 

task during their seat work, and what was written on the chalkboard 
- A self reflection by the teacher 
- Extensive discussion on the lesson 
- Discussion on the task, students’ response, teacher’s roles, and so on  
- -Comments and suggestions by a mathematics educator or an experienced 

teacher 

After - Ideas are used in the following lessons 
- A report of the lesson is sometimes shared by teachers in other schools 
- Next cycle starts and a new theme may be identified 

Analysing subject matter in relation to students’ thinking 

One of the key areas of teachers’ work during lesson study is examining the subject 
matter in the form of problem posed in the classroom with students’ thinking. A lesson 
plan, which incorporates the problem with various types of anticipated students’ 
response as major parts, plays a key role as a medium for the teachers to share and 
discuss the ideas and hypotheses to be examined through the process of lesson study. 
Leaning how to write, and how to read, a detailed lesson plan is thus one of the key 
elements in the entire process. The importance of students’ thinking is emphasised 
throughout the process of writing a lesson plan, as well as in conducting a lesson, as 
necessary elements to be incorporated into the developing and implementing the 
lesson.  
 The following example illustrates how anticipated students’ thinking can be 
incorporated in planning a lesson. The problem (Figure 1) is a typical one that appears 
in most textbooks in Grade 4 (Fujii, et al., 2010).  
 The problem is to be presented to grade four students after they have learned the 
concept of area and how to find the areas of square and rectangles. In particular, 
students are expected to use their prior knowledge of area of rectangles in the new 
situation of a composite figure.  
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Find the Area of “L shape”. 

 

Figure 1. The Problem (Grade 4). 

 

 In the textbook, one of the methods shown is finding the area by dividing the shape 
into two rectangles, together with a number expression (Figure 2). Then, another 
method of finding the area, by dividing the figure into two parts again but in a different 
direction, is presented without any number expression (Figure 3).  
 We need to be careful here with the difference between the two similar methods 
which are, however, different in terms of the direction of division. Also, the addition of 
a number expression does matter when planning a lesson with the problem. For 
example, a teacher may ask students to write a number expression for solution 2, after 
confirming the meaning of each number and operation in the case of solution 1. Or, the 
teacher may just delete the number expression from Figure 2 in their lesson plan in 
order to ask the original question in a more open way. 

  

Figure 2. Solution 1. Figure 3. Solution 2. 

 
The textbook then shows two more methods, neither of which include any dashed line 
that suggests a division. These figures are shown with number expressions and invite 
students to think of the idea of subtracting a small rectangle on the upper right corner 
from an ‘entire’ rectangle (Figure 4), and the idea of moving a part to form a new single 
long rectangle (Figure 5) respectively. It should noted here that the length of AB (4 cm) 
is given as double of DC (2 cm) intentionally for inviting the idea of forming a single 
rectangle represented in Figure 5. 
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Figure 4. Solution 3. Figure 5. Solution 4. 

 
 Then, the teacher may ask those students who solved the original problem on their 
own in these ways to explain their method, using everyday language and/or number 
expressions. Or, if none in the classroom found these methods, the teacher presents the 
figures and number expressions and asks the students to explain how we can interpret 
the method of finding the area and show the ideas by using the figures. These 
considerations are necessary for writing a lesson plan with the original problem.  
 Finally, in the textbook, a different shape is presented (Figure 6). The new figure is 
meant to be the place for applying and expanding what students are supposed to have 
learned. Teachers can invite students to pose a problem they themselves develop.  

 

Figure 6. A new problem with different shape. 

 

 In writing a lesson plan for a lesson with the original problem, multiple 
considerations of subject matter are required. We need to anticipate students’ 
alternative solutions methods and deal with them in a certain order to integrate the 
different ideas behind them. We also need to consider the way ideas are presented, 
everyday language, number expressions, figures, and so on. The final ‘applying and 
expanding’ phase may or may not be included in the same lesson, depending on the 
reality of students’ ability in the classroom. A whole consideration is just a part of the 
analyses of the topic taught in relation to anticipated students’ response to the problem.  
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The role of outside experts 

In lesson study, an outside expert is often invited as an advisor who facilitates the post-
lesson discussion and/or makes comments on the possible improvement of lesson from 
a broader viewpoint (Fernandez and Yoshida, 2004; Shimizu, 2008). The expert may 
be an experienced teacher, a supervisor at the local board of education, a principal of a 
different school, or a professor from the nearby university. In some cases, the group of 
teachers may meet with the expert several times prior to conducting the research lesson 
to discuss issues such as reshaping the objective of the lesson, clarifying the rationale of 
a particular task to be presented in the classroom, expanding the range of anticipating 
students’ response to the task, and so on. In this context, the outside expert can be a 
collaborator who shares responsibility for the quality of lesson with the teachers, not 
just an outside authority directing the team of teachers. 
 The university professor invited as an outside expert is expected, as a researcher, to 
provide new visions on curriculum reform and teaching practices, trends and issues in 
local and national educational policies. They can also provide some concrete 
suggestions for improving daily classroom practices, as well as commenting on what 
was observed in the research lesson. Given the tradition of lesson study, mathematics 
educators have often challenged by school teachers who deeply engaged in lesson study 
whether research results are useful for improving classroom practices. The expectations 
from teachers who are actively involved in lesson study are quite high. If the professor 
would not meet the standards for their needs, he or she may not be asked to come to 
the school as an advisor. In such cases, teachers may say the advice is “too theoretical” 
or “little relevance to our school”, for example.  

Leaning with and from their experienced colleagues  

Sharing new visions and immutable values 

Coping with new visions in education 

In lesson study a group of teachers collaboratively study the subject matter, how their 
students think and learn the particular topic in classroom, how to incorporate a new 
method for improving classroom instruction, and so on. New trends in the revision of 
national curriculum standards, revised roughly every 10 years, have strong impacts on 
the implementation of lesson study. We cannot neglect the connections of any objective 
of lessons with the goals and emphases described in the national curriculum standards.  
 In the current national curriculum standards (MEXT, 2008), for example, such 
classroom activity like communication, discussion, explaining, and writing are strongly 
valued and emphasised as ‘activities with languages’ in all the subject areas. Then, 
ongoing lesson studies in public schools often focus on introducing peer dialogues, 
small-group discussions, writing, and so on, in addition to the study of certain subject 
matters. Also, the revision of national curriculum standards that introduces some 
changes in the scopes and sequences of mathematical content eventually influences the 
choice of the themes to be pursued through lesson study. The introduction of an earlier 
conceptualisation of a common fraction is taught in the second grade in the new 
curriculum, while in the former national curriculum standards the concept of a 
common fraction was introduced in fourth grade. Teaching common fractions 
throughout the elementary school curriculum can then be a ‘hot topic’ to be examined 
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through lesson study. Learning to cope with these new visions in mathematics 
curriculum, teaching methods, and general emphasis in education is one of the major 
aims for teachers who are involved in lesson study. 

Sharing views on a ‘good’ lesson and an ‘excellent’ teacher 

Teachers who participate in lesson study learn other aspects, which go beyond the new 
visions and trends in education. Participating in lesson study provides opportunities for 
teachers to learn immutable values of teaching mathematics as a school subject, with 
and from their experienced colleagues. Such values are related to teachers’ views on a 
‘good’ lesson and an ‘excellent’ teacher.  
 Sugiyama (2008) argues that at least three different levels in the excellence of 
mathematics teachers can be identified in relation to the goal of teaching and their 
teaching competencies. School mathematics is often dominated by learning only with 
‘instrumental understanding’ (Skemp, 1977), where teachers just tell the right 
procedure or algorithm in classroom, like “turn it upside down and multiply” for a 
division of a fraction. On the other hand, those teachers who care about students 
constructing mathematical meanings of an operation may explain with figures or 
number lines the need to turn the divisor upside down and multiply it to get the 
dividend. Further, an excellent teacher will aim to foster students’ ability for thinking 
independently by inviting them to think of division as an inverse operation of 
multiplication; presenting particular numbers such as 8/15 divided by 2/5, which can 
be calculated by dividing the numerator and denominator respectively. Or, the teacher 
may want to support students in making connections between the division of common 
fractions and the division of decimal fractions. Then, the teacher may reconsider the 
teaching of division of decimal fractions (taught one year prior to the teaching of 
division of common fractions) as an opportunity for introducing such a property of the 
relationship among divisor, dividend, and quotient: a÷b = (a×c) ÷(b×c) to be applied 
with division of common fractions. 
 As the example above illustrates, three different levels of teacher’s competence can 
be identified.  

• Level 1: a teacher who can tell important basic ideas of mathematics such as facts, 
concepts, and procedures 

• Level 2: a teacher who can explain meanings and reasons for important basic 
ideas of mathematics in order for students to understand them 

• Level 3: a teacher who can provide students opportunities to understand these 
basic ideas by themselves, and support their learning in order for students to 
become independent learners. 

 The teacher at each level differs in their interpretation of the topic taught in relation 
to students’ thinking. Raising teachers’ awareness of children’s mathematical thinking 
provides teachers with a basis for their instruction and also for their own continued 
learning (Llinares & Krainer, 2006). There is a shared view on teacher’s excellence in 
terms of their capability of interpreting the topic taught in relation to mathematical 
background and anticipated students’ thinking on it. The views on teachers’ excellence 
are derived from our views on a good lesson.  
 Japanese teachers think that any lesson should include at least one climax (Shimizu, 
Y. (2006). The point here is that all the activities, or some variations of them, constitute 
a coherent system called as a lesson that hopefully include a climax. Among Japanese 
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teachers, a lesson is often regarded as a drama, which has a beginning, leads to a 
climax, and then invites a conclusion. The idea of ‘ki-sho-ten-ketsu’, which originated 
in the Chinese poem, is often referred to by Japanese teachers in their planning and 
implementation of a lesson. It is suggested that Japanese lessons have a particular 
structure, a flow moving from the beginning (ki, a starting point) towards the end 
(ketsu, summary of the whole story). If we take a story or a drama as a metaphor for 
considering a good lesson, then a lesson needs to have a highlight or climax based on 
the students’ activities guided by the teacher in a coherent way. Although they are both 
implicit in the post-lesson discussion of lesson study, once we talk about issues further 
beyond each lesson observed, the views on a good lesson and an excellent teacher 
appear as an important basis of lesson study.  

Joining in the discourse of the community of teachers 

Learning key pedagogical terms used in lesson study 

As mentioned above, the activity of lesson study includes careful planning and 
implementing the research lesson as a core of the whole activity, followed by post-
lesson discussion and reflection by participants. In the discourse of teachers in 
planning, implementing, and reflecting on lessons, particular pedagogical terms are 
often used in the contexts of examining classroom instruction (Shimizu, 1999). 
Through the participation in lesson study, beginning teachers learn these terms 
together with values attached to them.  

‘Hatsumon’ with posing a problem 
‘Hatsumon’ means asking a key question for provoking students’ thinking at a 
particular point in a lesson. At the beginning of the lesson, for example, the teacher 
may ask a question to probe or promote students’ understanding of the problem. On 
the other hand, in a whole-class discussion the teacher may ask, for example, about the 
connections among the proposed approaches to the problem or the efficiency and 
applicability of each approach. 

‘Kikan-shido’ during problem solving by students 
Structured problem-solving approach includes time for students to work on the 
problem on their own. ‘Kikan-shido’, which means an ‘instruction at students’ desk’, 
includes a purposeful scanning by the teacher of students’ problem solving. The teacher 
moves about the classroom, monitoring students’ activities silently, doing two 
important activities that are closely tied to the whole-class discussion that will follow. 
First, he or she assesses the progress of students’ problem solving. In some cases, the 
teacher suggests a direction for students to follow or gives hints to the students for 
approaching the problem. Second, he or she will make a mental note of several students 
who made the expected approaches or other important approaches to the problem. 
They will be asked to present their solutions later. Thus, in this period of the purposeful 
scanning, the teacher consider questions like “Which solution methods should I have 
students present first?” or “How can I direct the discussion towards an integration of 
students’ ideas?” Some of the answers to such questions are to be prepared in the 
planning phase but some are not. 
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‘Neriage’ in a whole-class discussion 
This is a term for describing the dynamic and collaborative nature of a whole-class 
discussion in the lesson. The term ‘Neriage’ in Japanese refers to ‘kneading up’ or 
polishing up’. In the context of teaching, the term works as a metaphor for the process 
of polishing students’ ideas and getting an integrated mathematical idea through a 
whole-class discussion. Japanese teachers regard Neriage as critical for the success or 
failure of the entire lessons. Based on his or her observations during Kikan-shido, the 
teacher carefully calls on students, asking them to present their methods of solving the 
problem on the chalkboard. The teacher encourages students to find the mathematical 
connections among alternative solution methods and leads the discussion on them.  

‘Matome’, summing up, at the final phase of lessons. 
‘Matome’ in Japanese means summing up. Japanese teachers think that this stage is 
indispensable to any successful lesson. At the Matome stage, Japanese teachers tend to 
make a final and careful comment on students’ work in terms of mathematical 
sophistication. In general, the whole-class discussion is reviewed briefly and what the 
students have learned is summarised by the teacher.  

‘Bansho’ as providing a bird’s-eye view of entire lesson 
For a research lesson, teachers carefully plan and implement how to organise writing 
on the chalkboard. ‘Bansho’ means writing on the chalkboard in front of classroom. The 
chalkboard may be divided into a few parts, such as the problem for today, students’ 
alternative solutions, and the summary of what the class learned. In some cases, 
teachers may use a smaller white board, which will be incorporated into the large 
picture, to invite students to write their ideas to present to their classmates later. 
Bansho can provide the afterword, a bird’s-eye view of entire lesson and then referred 
quite often during the post-lesson discussion. 

Associated values with pedagogical terms 

It is important to note that these pedagogical terms are used in the discourse in the 
particular contexts embedded in a whole system, to describe a particular style of 
teaching. Structured problem solving is often mentioned to describe the system with an 
emphasis on students’ thinking on problem posed. Japanese mathematics teachers 
often organise an entire lesson by posing just a few problems, with a focus on students’ 
various solutions to them. Educating teachers about lesson plans includes 
understanding key pedagogical terms. By using and listening to these terms, preservice 
and inservice teachers gradually become members of the community of teachers. The 
informal aspects found in the process of teacher education support the formal systems 
of teacher education programs in Japan. 

Learning practical methods for daily classroom practices 

Practical ideas shared by Japanese teachers 

I have been involved in lesson study of various forms and in various contexts in the past 
decades. Teachers engaged in lesson study have made numerous suggestions for 
improving classroom teaching in mathematics (Shimizu, 2009). Among these 
suggestions, the following five items are especially noteworthy as concrete ideas shared 
through the process of lesson study and then disseminated among teachers all around 
the country.  
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Suggestion 1: Label students’ methods with their names 
During the whole-class discussion of the students’ solution methods, each method is 
labelled with the name of the student who originally presented it. Thereafter, each 
solution method is referred to by the name of student in the discussion. This practical 
technique may seem to be trivial but it is very important to ensure the student’s 
"ownership" of the presented method and makes the whole-class discussion more 
exciting and interesting for the students. 

Suggestion 2: Use the chalkboard effectively 
Another important technique used by the teacher relates to Bansho, the use of the 
chalkboard. Whenever possible, teachers put everything written during the lesson on 
the chalkboard without erasing. By not erasing anything the students have done and 
placing their work on the chalkboard in a logical, organised manner, it is much easier to 
compare multiple solution methods. Also, the chalkboard can be a written record of the 
entire lesson, giving both the students and the teacher a bird’s-eye view of what has 
happened during the lesson.  

Suggestion 3: Use the whole-class discussion to polish students’ ideas 
The teacher carefully calls on students, asking them to present their methods of solving 
the problem on the chalkboard, selecting the students in a particular order. The order is 
quite important to the teacher both for encouraging those students who found naive 
methods, and for showing students’ ideas in relation to the mathematical connections 
among them that will be discussed later. In some cases, even an incorrect method or 
error may be presented, if the teacher thinks it would be beneficial for the class. 
Students’ ideas are presented on the chalkboard, to be compared with each other with 
oral explanations. The teacher’s role is not to point out the best solution but to guide 
the discussion by the students towards an integrated idea. 

Suggestion 4: Choose the context of the problem carefully 
The specific nature of the problem presented to the students is very important. In 
particular, the context for the problem is crucial for the students to be involved in it. 
Even the numbers in word problems are to be carefully selected for eliciting a wide 
variety of student responses. Careful selection of the problem is the starting point for 
getting a variety of student responses. 

Suggestion 5: Consider how to encourage a variety of solution methods 
What else should the teacher do to encourage a wide variety of student responses? 
There are various things the teacher can do when the students come up with only a few 
solution methods. It is important for the teacher to provide extra encouragement to the 
students to find alternative solution methods in addition to their initial approaches. 
 Hirabayashi (2002) argues that there are two major functions of lesson study. One 
function is as a way of doing research with a hypothesis, in the form of conducting 
lesson. Another function is as a place for presenting and discussing new findings based 
on the classroom practice. These functions relate to the issue of why lesson study can be 
suitable for professional development; for teachers to study the effectiveness of 
mathematics teaching and learning in their own classrooms. The following suggestions 
are accumulated findings based on the classroom practices of many teachers. 
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Discussion and conclusion 
In the previous sections, aspects of how Japanese mathematics teachers learn key 
elements for improving classroom instruction by participating in lesson study and 
utilise the learning opportunity for the development of their capabilities as teachers 
were described. Three different levels of characteristics of the mechanism and impact of 
lesson study were provided: sharing new visions and immutable values in education, 
joining in the discourse of the community of teachers, and learning practical methods 
for daily classroom practices. It is important to note that these elements work together 
in particular contexts in which lesson study is conducted.  
 The physical arrangement of the school also promotes the interaction among 
colleagues. All teachers share a large room in each school, the ‘teachers’ room’, where 
each teacher has a desk. They spend time in there, besides their classroom teaching. 
This situation allows for them to share information about students, ideas about 
subjects matter topics, and instructional materials. Also, teachers in public schools are 
required to move within their local prefecture from one school to another several times 
in their careers, possibly every three to ten years,. In some prefectures, teachers even 
move from elementary schools to lower secondary schools, and vice versa. Teachers 
also move within a school from one grade to another each year. This move may be 
beneficial for beginning teachers as it helps them to be familiar with the content to be 
taught in different grades. 
 Throughout the process of lesson study, a lesson plan is used as a vehicle with which 
teachers can learn and communicate about the topic to be taught, possible students’ 
approaches to the problem presented, and important teachers’ roles.  
Writing a lesson plan is supported by the use of a form.  
 Improvement of teaching and learning through lesson study took place in the 
Japanese education system more than a century ago. The continued efforts by teachers 
conducting lesson study can partly be attributed to clear learning goals for students 
shared among teachers in relation to the national curriculum standards, as well as 
teachers’ voluntary hard efforts in schools and collaborative supports from outside the 
schools. Further, importantly, the environments surrounding teachers, contexts and 
needs for lesson study, and forms embedded in the cultural activities, support teachers’ 
works in a lesson study cycle. 
 For more than a decade, in particular after the publication of The Teaching Gap 
(Stigler & Hiebert, 1999), educators and researchers in the field of mathematics 
education have been interested in lesson study as a promising source of ideas for 
improving education. For a Japanese mathematics educator who has been deeply 
involved in lesson study for more than two decades, this ‘movement’ has provided an 
opportunity for reflecting on how lesson study as a cultural activity works as a system, 
embedded in the society and community with values shared among teachers. The 
classroom practices are socially and culturally situated; shared values and beliefs of 
teachers are the key for continuous development of quality teaching. Japanese regular 
public schools have a clear mission: committed teachers, time and environments for 
teachers to work together, and feedback cycles that lead to continuing improvements. 
Learning new visions in education that are explicitly discussed in various phases of 
lesson study, and immutable values that are implicitly pervasive in the community of 
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teachers through the participation in lesson study, are crucial driving forces for 
professional developments in this particular context. 
 After researchers outside Japan introduced lesson study to their own mathematics 
education community, the term ‘lesson study’ spread among researchers and educators 
around the world. By now, schools and teachers in some different countries have been 
trying to implement lesson study into their own education systems. The central 
question to the possibilities of adoption of one approach to another context is raised 
from a perspective of teaching as a cultural activity. Improvement of teaching and 
learning through lesson study over a long period of time took place in the Japanese 
education system within the context where clear learning goals for students are shared 
among teachers in relation to the national curriculum standards, and with teachers’ 
voluntary hard efforts. There are challenges to be resolved in research and practice and 
possibilities to be explored in each context of different cultures. 

References 
Fernandez, C. & Yoshida, M (2004). Lesson study: A Japanese approach to improving mathematics 

teaching and learning. Mahwah, NJ: Lawrence Erlbaum Associates, 

Fujii, T., et al. (2010). New elementary school mathematics (grade 4). Tokyo: Tokyo Shoseki. 

Hiebert, J., Gallimore, R., Garnier, H., Givvin, K.B., Hollingsworth, H., Jacobs, J., Chiu, A.M.-Y., Wearne, 
D., Smith, M., Kersting, N., Manaster, A., Tseng, E., Etterbeek, W., Manaster, C., Gonzales, P., and 
Stigler, J. (2003). Teaching mathematics in seven countries: Results from the TIMSS 1999 Video 
Study. U.S. Department of Education. Washington, DC: National Center for Education Statistics. 

Hirabayashi, I. (2002). Lesson as a drama and lesson as another form of thesis presentation. In H. Bass, Z. 
P. Usiskin & G. Burrill (Eds), Studying classroom teaching as a medium for professional development. 
Proceedings of a U.S.–Japan workshop. Washington, DC: National Academy Press. 

Inagaki T (1995). A historical study on teaching theory in Meiji-era. Tokyo: Hyouron-Sha (in Japanese). 

Llinares, S & Krainer, K. (2006) Mathematics (students) teachers and teacher educators as learners. In A. 
Gutierrez & P. Boero (Eds). Handbook of research on the psychology of mathematics education: Past, 
present and future. Rotterdam: Sense Publisher. 

Lewis, C. & Tsuchida, I. (1998). A lesson like a swiftly flowing river: Research lessons and the improvement 
of Japanese education. American Educator, 22(4), 14–17, 50–52. 

Lewis, C. & Perry, R. Murata, A. (2006). How should research contribute to instructional improvement? 
The case of lesson study. Educational Researcher, 35(3), 3–14. 

Li, Y. & Shimizu, Y. (Eds). (2009). Exemplary mathematics instruction and its development in East Asia. 
ZDM—The International Journal of Mathematics Education 41(3). 

Makinae, N. (2010). The origin of lesson study in Japan. In Y. Shimizu, Y. Sekiguchi & K. Hino (Eds), The 
proceedings of the 5th east Asia regional conference on mathematics education: In Search of 
Excellence in Mathematics Education. Tokyo: Japan Society of Mathematical Education. 

Minato, S. (2002). Learn from Japanese mathematics education: Jugyou-kenkyuu as becoming the focus 
in the United States. A translation with annotations of The teaching gap (Stigler & Hiebert, 1999). 
Tokyo: Kyoiku Shuppan. 

Ministry of Education, Culture, Sports, Science and Technology (2008). National curriculum standards 
for kindergarten, elementary school, lower and upper secondary school. Tokyo: The Ministry. 

Sheldon, E. A. (1862). Object-teaching. New York: Charles Scribner. 

Shimizu, Y. (1999a). Aspects of mathematics teacher education in Japan: Focusing on teachers’ role. 
Journal of Mathematics Teacher Education, 2(1), 107–116. 

Shimizu, Y. (2002). Lesson study: what, why, and how? In H. Bass, Z. P. Usiskin & G. Burrill (Eds), 
Studying classroom teaching as a medium for professional development: Proceedings of a U.S.–
Japan workshop. Washington DC: National Academy Press. 

Shimizu, Y. (2006) How do you conclude today’s lesson? The form and functions of "Matome" in 
mathematics lessons. In D. Clarke, J. Emanuelsson, E. Jablonka & I. Ah Chee Mok (Eds), Making 
connections: Comparing mathematics classrooms around the world. Rotterdam: Sense Publishers. 

Shimizu, Y. (2008). The role of outside expert in lesson study in Japan. Paper presented at the interactive 
symposium, “Teacher-academic partnerships: International approaches to teacher professional 
development”, Annual Meeting of the American Educational Research Association (New York) March 
27. 



SHIMIZU 

MATHEMATICS: LAUNCHING FUTURES 
35 

Shimizu, Y. (2009). Japanese approach to teaching mathematics via problem solving. In B. Kaur, Y. B. Har 
& M. Kapur (Eds), Mathematical problem solving: Yearbook 2009 Association of Mathematics 
Educator. World Scientific. 

Shimizu, Y. (2010). Mathematics teachers as learners: Professional development of mathematics teachers 
in Japan. In F. K. S. Leung & Y. Li (Eds), Reforms and issues in school mathematics in East Asia: 
Sharing and understanding mathematics education policies and practices (pp. 169–180). Rotterdam: 
Sense Publishers. 

Skemp, R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 77, 
December, 20–26. 

Stigler, J. W. & Hiebert, J. (1999). The teaching gap: Best ideas from the world’s teachers for improving 
education in the classroom. New York, NY: Free Press. 

Sugiyama, Y. (2008). Introduction to elementary school mathematics education. Tokyo: Toyokan 
publishing Co. (in Japanese) 

Takahashi, A. (2011) The Japanese approach to developing expertise in using the textbook to teach 
mathematics. In Y. Li & G. Kaiser (Eds), Expertise in mathematics instruction. New York: Springer. 

 



 

MATHEMATICS: LAUNCHING FUTURES • © AAMT 2013 
36 

LAUNCHING MATHEMATICAL FUTURES:  
THE KEY ROLE OF MULTIPLICATIVE THINKING 

DIANNE SIEMON 

RMIT University 

dianne.siemon@rmit.edu.au 

 
Access to multiplicative thinking has been identified as the single, most important 
reason for the eight-year range in mathematics achievement in Years 5 to 9. While 
elements of multiplicative thinking are variously represented in the Australian 
Curriculum, the connections between these and how they contribute to the 
development of multiplicative thinking over time is not entirely clear. Two aspects 
of Hanna Neumann’s internationally respected reputation as a mathematician, 
teacher, researcher, and mentor will be used to frame this presentation. The first is 
her commitment to making the abstract accessible. The second is her passionate 
interest in reforming school mathematics curricula. Examples will be used to 
demonstrate how the abstract might be rendered accessible in the context of school 
mathematics and, conversely, how abstracting the everyday can help challenge 
long-held beliefs about learning mathematics. But the major part of this 
presentation will be concerned with the critical importance of multiplicative 
thinking in launching mathematical futures and its representation in the Australian 
Curriculum. 

Introduction 
It is an honour to have been asked to do the Hanna Neumann lecture at this, the 24th 
Biennial Conference of the Australian Association of Mathematics Teachers (AAMT). 
Hanna and Bernard Neumann came to Australia in 1963 to take up positions at the 
Australian National University—Hanna as a professorial fellow until her appointment 
to the chair of pure mathematics in 1964, and Bernard as Professor of Mathematics in 
the newly formed research Department of Mathematics at ANU. Convinced that 
mathematics education in Australia was ‘lagging behind the rest of the world to a 
frightening extent” (Fowler, 2000), Hanna became actively involved in the Canberra 
Mathematical Association providing courses for secondary mathematics teachers and 
contributing to the discussions on the new senior secondary mathematics syllabuses in 
NSW. 
 Previous lectures have been given by those who knew Hanna personally or at least 
heard her speak, for example, Dr Susie Groves and Dr Peter Taylor both of whom could 
claim 0 degrees of separation. I can claim 1 degree of separation having undertaken my 
Honours year in Pure Mathematics at Monash with Colin Fox and Steve Pride both of 
whom went on to ANU to study under either Hanna or Bernard and complete PhDs in 
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Mathematics. Bernard was a capable musician and Colin—now a broadcaster for ABC 
Classic FM—remembers fondly his many visits to the Neumann household for musical 
get togethers where Hanna, always working, would join them at the end of the evening 
for coffee.  
 We are indebted to Hanna for the very many legacies she has left behind but as a 
mathematics educator there are two that I would like to take up in this address—the 
first is her deep commitment to making the abstract accessible. The second was her 
passion for reforming school mathematics curricula (Fowler, 2012; Newman & Wall, 
1974).  

A commitment to making the abstract accessible 
According to Newman and Wall (1974), Hanna Neumann developed a style of teaching 
that made the “acquisition of very abstract ideas accessible through judicious use of 
more concrete examples and well-graded exercises” (p. 4). She regularly offered 
lectures on topics that were not considered formally in University courses but served to 
convey her own joy in mathematics, participating in the model-building group and 
introducing undergraduate students to ‘new mathematics’ in creative and innovative 
ways. She also took an active interest in the professional development of secondary 
teachers of mathematics. For example, in 1971 she addressed a regional meeting of 
teachers at Wodonga Technical School on ‘Modern Mathematics—Symbolism and its 
importance at the secondary and tertiary levels’. An issue, many would agree, we are 
still grappling with today.  
 Having completed my undergraduate degree in pure mathematics at Monash, I had 
no idea at the time just how ‘modern’ the mathematics courses were at Monash. All I 
know is that when we arrived as naïve first year students having done reasonably well 
under the ‘old mathematics curriculum’, we were deep-ended into the ‘new 
mathematics’. My first semester was a blur—nothing looked or felt like anything we had 
done before. We were introduced to sets, fields, and groups and were required to use a 
very different type of mathematical language—but by October or so, it all magically fell 
into place and I remember being carried away by the sheer beauty and connectedness 
of it all—Hanna would have been proud.  
 As a teacher of secondary mathematics and fledgling mathematics educator I was 
again lucky to be in the right place at the right time. The Study Group for Mathematics 
Learning (SGML) was set up by an enthusiastic group of mathematics teachers1 who 
were keen to apply the ‘new mathematics’ in schools. Zoltan Deines spent some time in 
Melbourne around this time and the SGML workshops familiarised us with the use of 
structured materials to support a different approach to mathematics teaching and 
learning (e.g., Multibase Arithmetic Blocks, Attribute Blocks, Logic Tracks and games 
involving multiple representations and embodiments). 

Exploring group theory 

Some years later, encouraged by what I had learned, I incorporated my own version of 
Dienes’ ‘games’ (e.g., Dienes, 1960) to illustrate the properties of mathematical groups. 
I was the Year 9 and 10 Coordinator at Mater Christi College in Belgrave and we were 

                                                

1  Notably Vic Ryle and Ken Clements 
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keen to see if we could encourage more girls to continue with mathematics into Year 11 
and 12, I set up an elective called ‘Advanced Maths’ which was open to all and designed 
to explore mathematics that was not in the curriculum through games and activities. 
We worked with Boolean Algebra using logic tracks, vector mappings using a 
rectangular courtyard, and I designed a line-dancing type of routine based on Dienes’ 
games to tease out the properties of cyclic groups. Each set of four girls formed a square 
ABCD and the moves were limited to: 
 N: no move, stay in the same place. 
 R: move one place right (A to B to C to D to A) 
 L: move one place left (A to D to C to B to A) 
 C: move to the diagonally opposite place (A to C to A, B to D to B) 

Table 1. Table of moves. 

 N R L C 
N N R L C 

R R C N L 

L L N C R 

C C L R N 

 
 We also explored Modulo Arithmetic, otherwise known as clock arithmetic, in this 
context, specifically, {0, 1, 2, 3; + mod 4} where, for example, 2 + 3 ∼ 1 mod 4, and 2 x 3 
∼ 2 mod 4. This resulted in a similar table to the one above and facilitated a discussion 

about patterns and commonalities. In particular that each combination of moves or 
combination of digits under addition generated another element of the set (closed 
property), that for every element of each set there was another element that when 
combined/added resulted in the original element (identify element), that for each 
element there was another element that when combined with the original element 
resulted in the identity element (inverse), and that order of combination or addition did 
not matter, that is the operation in each case was commutative. This lead us to consider 
other properties and eventually a better, deeper understanding of the real numbers. 

The case of 9C 

In my second year at Mater Christi I found myself teaching a Year 9 class of girls who 
were intent on leaving school as early as possible (the ‘C’ stood for ‘commercial’). 
Financial mathematics was a core component of their ‘modified’ program but the 
available text treated these topics in a particularly procedural way. I decided to try a 
different approach. I asked the students to pinch the pages of the respective chapters 
between their forefinger and thumb (it amounted to about half a centimetre) and said, 
‘I’m going to let you in on a secret. All of the problems in these pages are of the type n% 
of m = p’. Over the course of two weeks we selected and solved problems according to 
type, that is, (i) n and m known, (ii) n and p known, or (iii) m and p known, and with 
little regard for context (i.e., profit and loss, simple interest, discount, etc.). This might 
seem counterintuitive, but it worked. At the end of the two weeks not only were they 
happy to sit the test, they all passed with flying colours and asked if we could do more 
maths like that—I obliged and we used this technique to explore Pythagoras’ Theorem, 



SIEMON 

MATHEMATICS: LAUNCHING FUTURES 
39 

which was not in their course, but it demonstrated to them that they could perform 
equally as well as the girls in 9P (P for ‘professional’). This taught me a valuable lesson 
about the clarifying power of mathematical structure, and that ‘real-world’ contexts can 
sometimes get in the way of learning mathematics. 

Making the everyday abstract 

Sometimes, making the everyday abstract can be a useful strategy to focus on the 
learning involved. For example, many years ago in an effort to convince parents that 
rote learning the multiplication ‘tables’ was ultimately counter-productive, I developed 
a set of * tables, where * was an operator defined as follows: a * b = ((a + b) × (a × 

b))/(b – a). Exerts from two * tables were provided (see Table 2) and all but a small 
group of parents were asked to learn these by whatever means they chose in 
preparation for a test in 10 minutes time. The small group were taught the meaning of 
the operator in terms of the rule: ‘sum multiplied by product, divided by the difference 
reversed’ and encouraged to practice applying the rule to any fact in the one and two * 
tables including the related facts (e.g., 4 * 1 as well as 1 * 4). 

Table 2. List of * facts. 

0 * 1 = 0 0 * 2 = 0 

1 * 1 = undefined 1 * 2 = 6 

2 * 1 = –6 2 * 2 = undefined 

3 * 1 = –6 3 * 2 = –30 

4 * 1 = –6.666… 4 * 2 = –24 

5 * 1 = –7.5 5 * 2 = –23.333… 

6 * 1 = –8.4 6 * 2 = –24 

 
 The test involved five ‘facts’, 3 * 1, 4 * 2, 6 * 1, 1 * 2 and 2 * 3. Not surprisingly, most 
parents remembered at least three of the facts and the best anyone, not involved in the 
small group did, was four out of five. Some assumed * was commutative, others 
complained that it was not fair as 2 * 3 was not in the list provided. By contrast, all of 
the small group were able to achieve five out of five correct. This prompted an 
extremely robust and valuable discussion about the importance of understanding the 
operator involved and not just relying on memory however effective this was in the 
short term. 
 Another example of the benefits of making the everyday abstract arose from inviting 
primary pre-service teachers to construct a completely new set of names and symbols 
for the digits 0 to 9 then brainstorm what might be involved in teaching these to a 
group of five-year-olds. This also led to a robust discussion on the nature of 
mathematics learning and our assumptions as teachers. I have not tried it, but 
extending this activity to another number base and generating multi digit numbers 
might also be worthwhile. 

Reforming mathematics curriculum 
In 1964 Hanna Neumann was actively engaged in the discussions on the new, senior 
secondary mathematics syllabuses in NSW and, as Newman and Wells (1974) point out, 
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“[it] was undoubtedly her work in evaluation of the draft proposals and her energetic 
work on suggestions for improvements, which earned for the Canberra Mathematical 
Association a reputation for trenchant and constructive criticism” (p. 6). It is in this 
same spirit that I offer the following commentary on mathematics curriculum in 
general and the role and place of multiplicative thinking in particular. 
 The crowded curriculum and the lack of succinct, unambiguous guidelines about the 
key ideas and strategies needed to make progress in school mathematic have been the 
concern of teachers of mathematics for many years. This is particularly the case for 
Number which successive mathematics curricula and text books have tended to 
represent as long lists of disconnected ‘topics’ that value the reproduction of relatively 
low-order skills and competencies rather than promoting deep understanding of key 
ideas, generalisation and problem solving (Siemon, 2011a).  
 While the importance of focussing on ‘big ideas’ is widely recognised (e.g., Charles, 
2005), there is little agreement about what these are or how these are best represented 
to support the teaching and learning of mathematics. For example, what might be a ‘big 
idea’ from a purely mathematical perspective (e.g., set theory), may not be a ‘big idea’ 
from a pedagogical perspective. That is, ‘big ideas’ need to be both mathematically 
important and pedagogically appropriate to serve as underlying structures on which 
further mathematical understanding and confidence can be built (Siemon, Bleckly & 
Neal, 2012). The Curriculum Focal Points for Pre-Kindergarten through Grade 8 
Mathematics: A Quest for Coherence (NCTM, 2006) go some way towards achieving 
this goal by providing a more detailed account of ‘important mathematics’ at each grade 
level for K to 8. But big ideas are notoriously difficult to accommodate in curriculum 
documents as Hanna Neumann experienced in her endeavours to introduce the big 
ideas of ‘modern mathematics’ into the NSW mathematics curriculum in the sixties. 
But this does not mean we should not engage with this slippery notion. Big ideas serve 
a useful purpose in that they operate as a test of curriculum coherence and serve as 
interpretive lenses through which skill-based content descriptors can be examined in 
more depth.  

Big ideas in mathematics 

For the purposes of the Assessment for Common Misunderstandings (Department of 
Education and Early Childhood Development, 2007; Siemon, 2006) and the 
Developmental Maps (Siemon, 2011b), which were developed for the Victorian 
Department of Education and Early Childhood Development, a ‘big idea’ in 
mathematics: 

• is an idea, strategy, or way of thinking about some key aspect of mathematics 
without which, students’ progress in mathematics will be seriously impacted; 

• encompasses and connects many other ideas and strategies; 
• serves as an idealised cognitive model (Lakoff, 1987), that is, it provides an 

organising structure or a frame of reference that supports further learning and 
generalizations;  

• cannot be clearly defined but can be observed in activity (Siemon, 2006, 2011b). 
 The big ideas identified for this purpose are shown in Table 3. The rationale for the 
choice of number and for considering multiplicative thinking in particular will be 
addressed in more detail below. 
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Table 3. Big Ideas identified for the Assessment for Common Misunderstanding Tools 

By the end of  ‘Big Idea’  

Foundation 
Trusting the Count—developing flexible mental objects for the numbers 0 to 
10 (2 tools) 

Year 2 
Place-value—the importance of moving beyond counting by ones, the 
structure of the base 10 numeration system (4 tools) 

Year 4 
Multiplicative thinking—the key to understanding rational number and 
developing efficient mental and written computation strategies in later years 
(6 tools) 

Year 6 
Partitioning—the missing link in building common fraction and decimal 
knowledge and confidence (7 tools) 

Year 8 
Proportional reasoning—extending what is known about multiplication and 
division beyond rule-based procedures to solve problems involving fractions, 
decimals, per cent, ratio, rate and proportion (8 tools) 

Year 10 

Generalising—skills and strategies to support equivalence, recognition of 
number properties and patterns, and the use of algebraic text without which 
it is impossible to engage with broader curricula expectations at this level (4 
tools) 

Multiplicative thinking 

The capacity to think multiplicatively is crucial to success in further school 
mathematics. It underpins nearly all of the topics considered in the middle years and 
beyond, and lack of it or otherwise is the single most important reason for the eight-
year range in mathematics achievement in Years 5 to 9 (Siemon, Virgona & Corneille, 
2001). Hence the choice of number for the ‘big ideas’ listed above. 
 Multiplicative thinking involves recognising and working with relationships between 
quantities. In particular, it supports efficient solutions to more difficult problems 
involving multiplication and division, fractions, decimal fractions, ratio, rates and 
percentage. Although some aspects of multiplicative thinking are available to young 
children, multiplicative thinking is substantially more complex than additive thinking 
and may take many years to achieve (Vergnaud, 1983; Lamon, 2007). This is because 
multiplicative thinking is concerned with processes such as replicating, shrinking, 
enlarging, and exponentiating that are fundamentally more complex, rather than the 
more obvious processes of aggregation and disaggregation associated with additive 
thinking and the use of whole numbers (Siemon, Beswick, Brady, Clark, Faragher & 
Warren, 2011). 
 The Scaffolding Numeracy in the Middle Years (SNMY) research project (see 
Siemon, Breed, Dole, Izard & Virgona, 2006) was designed to explore the development 
of multiplicative thinking in Years 4 to 8. Multiplicative thinking was seen to be 
characterised by: 

• a capacity to work flexibly and efficiently with an extended range of numbers (i.e., 
larger whole numbers, decimals, common fractions, ratio and per cent),  

• an ability to recognise and solve a range of problems involving multiplication or 
division including direct and indirect proportion, and  

• the means to communicate this effectively in a variety of ways (e.g., words, 
diagrams, symbolic expressions, and written algorithms).  

 The SNMY project used rich tasks in a pen and paper format to test a hypothetical 
learning trajectory for multiplicative thinking in Grades 4–8 (Siemon et al., 2006). 
Item response theory (e.g., Bond & Fox, 2001) was used to identify eight qualitatively 
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different categories of responses, which subsequently lead to a Learning and 
Assessment Framework for Multiplicative Thinking (LAF) comprised of eight ‘zones’ 
representing increasingly sophisticated levels of understanding (see Table 4). Rich 
descriptions were developed for each zone and teaching advice was provided in the 
form of what needed to be consolidated and established and what needed to be 
introduced and developed to scaffold multiplicative thinking to the next zone.  

Table 4. The Learning Assessment Framework for Multiplicative Thinking  
(Siemon et al., 2006) 

Zone 1: Solves simple multiplication and division problems involving relatively small whole 
numbers but tends to rely on drawing, models and count-all strategies. May use skip counting 
for groups less than 5. Makes simple observations from data and extends simple number 
patterns. Multiplicative thinking (MT) not really apparent as no indication that groups are 
perceived as composite units, dealt with systematically, or that the number of groups can be 
manipulated to support more efficient calculation 

Zone 2: Counts large collections efficiently—keeps track of count but needs to see all groups. 
Shares collections equally. Recognises small numbers as composite units (e.g., can count equal 
groups, skip count by twos, threes and fives). Recognises multiplication needed but tends not to 
be able to follow this through to solution. Lists some of the options in simple Cartesian product 
situations. Some evidence of MT as equal groups/shares seen as entities that can be counted. 

Zone 3: Demonstrates intuitive sense of proportion. Works with useful numbers such as 2 and 
5 and intuitive strategies to count/compare groups (e.g., doubling, or repeated halving to 
compare simple fractions). May list all options in a simple Cartesian product, but cannot explain 
or justify solutions. Beginning to work with larger whole numbers and patterns but tends to rely 
on count all methods or additive thinking (AT). 

Zone 4: Solves simple multiplication and division problems involving two-digit numbers. 
Tends to rely on AT, drawings and/or informal strategies to tackle problems involving larger 
numbers, decimals and/or less familiar situations. Tends not to explain thinking or indicate 
working. Partitions given number or quantity into equal parts and describes part formally. 
Beginning to work with simple proportion. 

Zone 5: Solves whole number proportion and array problems systematically. Solves simple, 2-
step problems using a recognised rule/relationship but finds this difficult for larger numbers. 
Determines all options in Cartesian product situations involving relatively small numbers, but 
tends to do this additively. Beginning to work with decimal numbers and percent. Some 
evidence MT being used to support partitioning. Beginning to approach a broader range of 
multiplicative situations more systematically 

Zone 6: Systematically lists/determines the number of options in Cartesian product situation. 
Solves a broader range of multiplication and division problems involving 2-digit numbers, 
patterns and/or proportion but may not be able to explain or justify solution strategy. Renames 
and compares fractions in the halving family, uses partitioning strategies to locate simple 
fractions. Developing sense of proportion, but unable to explain or justify thinking. Developing 
capacity to work mentally with multiplication and division facts 

Zone 7: Solves and explains one-step problems involving multiplication and division with 
whole numbers using informal strategies and/or formal recording. Solves and explains solutions 
to problems involving simple patterns, percent and proportion. May not be able to show 
working and/or explain strategies for situations involving larger numbers or less familiar 
problems. Constructs/locates fractions using efficient partitioning strategies. Beginning to make 
connections between problems and solution strategies and how to communicate this 
mathematically 

Zone 8: Uses appropriate representations, language and symbols to solve and justify a wide 
range of problems involving unfamiliar multiplicative situations, fractions and decimals. Can 
justify partitioning, and formally describe patterns in terms of general rules. Beginning to work 
more systematically with complex, open-ended problems. 
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 What the data that underpins this research-based framework shows is that the 
transition from additive to multiplicative thinking is nowhere near as smooth or as 
straightforward as most curriculum documents seem to imply, and that access to 
multiplicative thinking as it is described here represents a real and persistent barrier to 
many students’ mathematical progress in the middle years of schooling (Siemon & 
Breed, 2005; Siemon et al., 2006). 
 To become confident multiplicative thinkers, children need a well-developed sense 
of number (based on trusting the count, place-value and partitioning) and a deep 
understanding of the many different contexts in which multiplication and division can 
arise (e.g., sharing, equal groups, arrays, regions, rates, ratio and the Cartesian 
product). The transition from additive strategies to meaningful, mental strategies that 
support multiplicative reasoning more generally requires a significant shift in thinking 
from a count of equal groups and a reliance on repeated addition, to the for each and 
times as many ideas for multiplication that underpin all further work with 
multiplication, division and rational number. While the array and region ideas for 
multiplication can be used to support a count of equal groups, their power lies in the 
fact that they can be used to underpin this important shift in thinking and, ultimately, 
the factor–factor–product idea that supports the inherently multiplicative operations 
of equipartitioning, replicating, enlarging, shrinking and a more generalised 
understanding of the relationship between multiplication and division. In addition, the 
region and for each ideas for multiplication are also critically important in the 
interpretation and construction of fraction representations (for a much more detailed 
discussion of these ideas see Siemon, Beswick, Brady, Clark, Farragher & Warren, 
2011). 

The difference between additive and multiplicative thinking 

The essential difference between additive and multiplicative thinking relates to the 
nature of the units under consideration. For addition and subtraction, “all the number 
meanings … are directly related to set size and to the actions of joining or separating 
objects and sets” (Nunes & Bryant, 1996, p. 144). In these situations it is possible to 
work with the numbers involved as collections that can be aggregated or disaggregated 
and renamed as needed to facilitate computation.  
 While it is possible to use repeated addition to solve multiplication problems and 
repeated subtraction to solve division problems, these are essentially additive 
processes—the only difference is that the sets being added or subtracted are the same 
size. Multiplicative thinking involves much more than this and “it would be wrong to 
treat multiplication as just another, rather complicated, form of addition, or division as 
just another form of subtraction” (Nunes & Bryant, 1996, p. 144). For example, 
consider the following Year 4 responses to the problem: how many muffins could be 
made with 6 cups of milk if 2/3 cup of milk produced 12 muffins? 
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Figure 1. Two solutions to the Muffin problem (Siemon et al., 2011). 

 The first response uses repeated addition to determine how many two-third cups are 
in 6 cups, and then counting to find the total number of muffins. The second solution 
recognises the proportional relationship between the quantity of milk and the number 
of muffins. Both strategies produce the correct answer, but the first is additive whereas 
the second is multiplicative. 
 For multiplication, it is necessary to simultaneously recognise and coordinate the 
number of groups (multiplier) and the number in each group (multiplicand) (Anghileri, 
1989; Jacob & Willis, 2001; Nunes & Bryant, 1996; Vergnaud, 1983). According to 
Steffe (1992), for a ‘situation to be established as multiplicative, it is always necessary at 
least to coordinate two composite units in such a way that one composite unit is 
distributed over the elements of the other composite unit’ (p. 264), resulting in a 
composite unit of composite units (e.g., see Figure 2). 

 

Figure 2. A composite unit of composite units. 

 Recognising and working with composite units introduces the distinction between 
how many (the count of composite units) and how much (the magnitude of each 
composite unit). This distinction is often overlooked in the rush to symbolise, with the 
result that many children interpret 3 groups of four as successive counts of four ones 
rather than 3 fours which emphasises the distribution of one composite unit over 
another. This has important implications for the development of multiplicative 
thinking and children’s capacity to understand fractions. By distinguishing between the 
count and the unit, children are more likely to recognise the multiplicative nature of 
our number systems For example, the digits in the numeral 34 are both counting 
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numbers (i.e., how many numbers), but their location or place determines the unit (i.e., 
how much). In the fraction ¾ the numerator indicates how many but the denominator 
indicates how much. They are also more likely to recognise the relative magnitude of 
different units (e.g., that 3 quarters is larger than 3 eighths) and the inverse 
relationship between how many and how much (e.g., the larger the number of 
shares/equal parts, the smaller each share/part).  

Multiple pathways to multiplicative thinking 

Nearly all of the research-based developmental frameworks for multiplication are 
framed in terms of counting-based strategies that ultimately terminate with a reference 
to the use of number fact knowledge (e.g., Department of Education & Early Childhood 
Development, 2010; Department of Education & Training, 2007; van den Heuvel-
Panhuizen, 2001). This is not surprising given the almost exclusive focus on equal 
groups and repeated addition in the early years. However, an increasing number of 
researchers (e.g., Confrey, Maloney, Nguyen, Mojica & Myers, 2009; Downton, 2008; 
Nunes & Bryant, 1996; Schmittau & Morris, 2004) suggest that there is a parallel path 
to the development of multiplicative thinking based on young children’s capacity to 
share equally and work with one-to-many relationships. For example, having explored 
the ‘Baa-Baa Black Sheep’ rhyme in literacy, a teacher posed the following question to 
her class of 5 and 6 year olds: ‘I wonder how many bags of wool would there be if there 
were 5 sheep?’ While most decided that there would be 15 bags of wool, what was 
interesting was the number of children who constructed abstract representations, in 
particular, representations that connected each sheep with three bags of wool (e.g., see 
Figure 3). 
 

 

Figure 3. Five year olds solution to the Baa-Baa Black Sheep problem (Siemon et al., 2011). 

 This suggests that the children understood the situation in terms of for each sheep 
there are 3 bags of wool. This is essentially a ratio or times as many idea (e.g., 3 times 
as many bags of wool as sheep) and is quite distinct from the equal groups idea, even 
though the children invariably counted by ones to arrive at the solution of 15 bags of 
wool altogether. 

The representation of multiplicative thinking in the Australian Mathematics 
Curriculum 

In most English-speaking countries, multiplication and division are introduced 
separately, with multiplication typically considered before division. Given what is 
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known about multiplicative thinking, young children’s experience with sharing, and 
evidence to suggest that simple proportion problems can be solved earlier than 
generally expected (e.g., Confrey et al., 2009; Nunes & Bryant, 1996; Schmittau & 
Morris, 2004; Siemon et al., 2006), the introduction of the Australian Curriculum: 
Mathematics [ACM] provided an opportune time to reconsider when and how we 
introduce these important ideas. How well has it fared?  
 A detailed analysis of the ACMs potential for developing multiplicative thinking is 
included in Appendix A. Here, I shall draw on some of the observations made 
previously (see Siemon, Blecky &Neal, 2012) in relation to the presence or otherwise of 
the key ideas and strategies mentioned above—the codes in brackets refer to the 
content descriptors in the ACM. 
 While sharing is mentioned in Foundations (ACMNA004) the only other reference 
to any of the key ideas discussed above is in Year 2 where students are expected to 
recognise and represent “multiplication as repeated addition, groups and arrays” 
(ACMNA031) and “division as grouping into equal sets” (ACMNA032). This reference 
to division is ambiguous as it could refer to quotition division (where the divisor refers 
to size of group) or partition division (where the divisor refers to the number of equal 
groups). However, grouping a collection into equal sets and working with arrays is no 
guarantee of multiplicative thinking unless the focus of attention is shifted from a count 
of groups of the same size (additive) to a given number of groups of any size (Siemon et 
al., 2011). Importantly, the region idea is not mentioned at all and yet this underpins 
the area (by or factor) idea of multiplication (i.e., each part multiplied by every other 
part) which is needed to support the multiplication of larger whole numbers (e.g., 2-
digit by 2-digit multiplication), the interpretation of fraction diagrams (e.g., thirds by 
fifths are fifteenths), and, ultimately, the multiplication and division of fractions and 
linear factors. 
 In Year 3 students are expected to “recall multiplication facts of two, three, five and 
ten and related division facts” (ACMNA056). This wording together with the previous 
(AMN026) and subsequent (AMN074) references to number sequences implies that the 
multiplication facts are learnt in sequence (e.g., 1 three, 2 threes, 3 threes, 4 threes, 5 
threes, etc.) rather than on the basis of number of groups irrespective of size (e.g., 3 of 
anything is double the group and one more group).  
 Factors and multiples are referred to in Year 5 (ACMNA098) and Year 6 
(ACMNA122), indices in Years 7 and 8 (ACMNA149 & ACMNA182), and solving 
problems involving specified numbers and operations across year levels (e.g., 
ACMNA100, ACMNA101 and ACMNA103). However, there is no suggestion of the 
connections between them or that something other than a repeated addition model of 
multiplication is needed to support a deep understanding of factors and indices 
(Confrey et al., 2009). 
 In the early years, the ACM refers to the capacity to “recognise and describe half as 
one of two equal pieces” (ACMNA016) and “to recognise and interpret common uses of 
halves, quarters and eighths of shapes and collections” (ACMNA033) but no mention is 
made of the important link to sharing which provides a powerful basis for the creation 
of equal parts and the link between fractions and partitive division (Nunes & Bryant, 
1996). In Year 3, students are expected to be able to “model and represent unit 
fractions including 1/2, 1/4, 1/3, 1/5 and their multiples to a complete whole” 
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(ACMNA058). This suggests that fraction symbols are expected at this stage, which is 
problematic given the well-known difficulties associated with interpreting fraction 
symbols and representations (e.g., Lamon, 1999). Also, the reference to counting 
fractions at Year 4 (ACMNA078) could lead to an over-reliance on additive, whole 
number-based approaches to locating fractions on a number line at the expense of 
multiplicative approaches such as equipartitioning (Confrey et al., 2009; Lamon 1999).  
 The ACM does not refer to proportional reasoning explicitly until Year 9 where 
reference is made to solving problems involving direct proportion and simple rates 
(ACMNA208) and enlargements, similarity, ratios and scale factors in relation to 
geometrical reasoning (ACMMG220 & ACMMG221). While many of the prerequisite 
skills are included in Years 6 to 8, these appear in the form of disconnected skills. For 
example, “find a simple fraction of a quantity” (ACMNA127) at Year 6, “express one 
quantity as a fraction of another”, “find percentages of quantities and express one 
quantity as a percentage of another” (ACMNA 155 & ACMNA158) at Year 7, and solve a 
range of problems involving percentages, rates and ratios (ACMNA187 & ACMNA188) 
at Year 8. Importantly, there is nothing to suggest how these skills relate to one another 
or their rich connections to multiplicative thinking more generally.  
 As the above discussion and the analysis in the Appendix shows, the content 
descriptors of the ACM have the potential to support the development of multiplicative 
thinking. But the extent to which this potential is realised is heavily dependent on how 
the descriptors are interpreted, represented, considered and connected in practice. 
Content descriptors do need to be in a form that is clearly assessable but, if these are 
taught and assessed in isolation with little attention to student’s prior knowledge and 
the underpinning ideas and strategies, there is a substantial risk that access to 
multiplicative thinking will continue to elude many. On the other hand, if the content 
descriptors are taught and assessed in conjunction with the proficiencies, that is, 
conceptual understanding, procedural fluency, mathematical reasoning and 
mathematical problem solving, the chances of increasing access to multiplicative 
thinking in the middle years can be greatly enhanced. 

Conclusion 
Hanna Neumann left a valuable legacy to mathematics and mathematics education 
both here and abroad. As one of the founding members of AAMT, it is fitting that we 
acknowledge her contributions to school mathematics in the biennial lecture that bears 
her name. Her commitment to making the abstract accessible and her passion for 
reforming school mathematics curriculum framed this presentation. In demonstrating 
how group theory might be explored in the context of dance and clock arithmetic and 
what can be gained from working with mathematical structures, I hope you too might 
be prompted to consider how you might make the abstract accessible and the everyday 
abstract. My comments on the place of multiplicative thinking in the Australian 
Curriculum: Mathematics, are offered in the same spirit and with the same motivation 
that Hanna offered her suggestions and feedback on the NSW senior secondary 
mathematics syllabuses in the sixties—that is, the need to recognise and focus on the 
‘big ideas’ in mathematics so that all learners have the opportunity to experience the joy 
of doing mathematics and to access the future that it affords. 
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Appendix: Opportunities for multiplicative thinking in the ACM 
Year 
Level 

Selected ACM Content 
Descriptors (ACARA, 2013)  

Relationship to Multiplicative Thinking 

Subitise small collections of objects 
(ACMNA003) 

Helps establish the notion of composite units—
children ‘see’ a collection of 4 ones as ‘four’ without 
having to count 

F Represent practical situations to model 
addition and sharing (ACMNA004) 

Sharing helps establish notion of equal shares, equal 
groups and relationship between the number of 
shares (how many) and the number in each share 
(how much) 

Develop confidence with number 
sequences to and from 100 by ones 
from any starting point. Skip count by 
twos, fives and tens starting from zero 
(ACMNA012) 

Skip counting, while essentially additive, if used as a 
strategy for physically counting large collections, 
helps establish one-many relationships and notion of 
composite units. Risk: limited to number naming 
sequences 

Recognise, model, read, write and order 
numbers to at least 100. Locate these 
numbers on a number line 
(ACMNA013) 

Locating numbers on a number line—if open—invites 
the use of multiplicative or equipartitioning based on 
benchmarks (e.g., it’s about half) 

Recognise and describe one-half as one 
of two equal parts of a whole. 
(ACMNA016) 

Introduces multiplicative partitioning and halving. 
Risk is that parts will not be seen in relation to the 
whole 

Investigate and describe number 
patterns formed by skip counting and 
patterns with objects (ACMNA018) 

Potential to support notion of composite units. Risk is 
that this will be limited to additive or repeating 
patterns rather than multiplicative or growing 
patterns 

1 

No further reference to sharing 

Investigate number sequences, initially 
those increasing and decreasing by 
twos, threes, fives and ten from any 
starting point, then moving to other 
sequences. (ACMNA026) 

Suggests a count of twos, threes, etc. Risk: limited to 
number naming sequences, preferences a count of 
groups as basis for multiplication facts 

Recognise and represent multiplication 
as repeated addition, groups and arrays 
(ACMNA031) 

Key representations. Risk: interpretation limited to 
equal groups, count of groups  

Recognise and represent division as 
grouping into equal sets and solve 
simple problems using these 
representations (ACMNA032) 

Inclusive of both forms of division (quotition and 
partition) . Risk: limited to count of groups, sharing 
not generalised to ‘think of multiplication” 

Recognise and interpret common uses 
of halves, quarters and eighths of 
shapes and collections 

Potential to engage students in equipartitioning, 
Risk: Fraction names seen as labels for parts rather 
than relationships. No involvement in 
equipartitioning, partitioning strategies, teaching 
may not deal with core generalisations 

2 

Place value appears to be treated additively 

Recall multiplication facts of two, three, 
five and ten and related division facts 
(ACMNA056)  
 

Implies memorisation of facts, unclear as to how 
these are represented (e.g., counts of 2 or 2 of 
anything). Risk: limited to equal groups, count of 
groups (i.e., ‘traditional tables’ representation) 

3 

Represent and solve problems involving Potentially supportive of multiplicative thinking if 
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multiplication using efficient mental 
and written strategies and appropriate 
digital technologies 

strategies based on arrays and regions and shift of 
thinking from size of group (count of equal groups) to 
number of groups (factor idea) 

Model and represent unit fractions 
including 1/2, 1/4, 1/3, 1/5 and their 
multiples to a complete whole 
(ACMNA058) 

Strongly multiplicative where students engaged in 
equipartitioning strategies to construct their own 
fraction models and representations. Risk: focus on 
the name of parts not the relationship to the whole 

 

No reference to representations of multiplication and division 

Recall multiplication facts up to 10 × 10 
and related division facts (ACMNA075)  

Implies memorisation of facts, unclear as to how 
these are represented (see above). Risk: limited to 
equal groups, count of groups (i.e., ‘traditional tables’ 
representation) 

Develop efficient mental and written 
strategies and use appropriate digital 
technologies for multiplication and for 
division where there is no remainder 
(ACMNA076) 

Potentially supportive of multiplicative thinking if 
strategies based on shift of thinking from size of 
group (count of equal groups) to number of groups 
(factor idea), use of distributive law , etc. Risk: 
Strategies based on repeated addition, count all 
groups 

Investigate equivalent fractions used in 
contexts (ACMNA077) 

Highly multiplicative if explored via equipartitioning 
strategies (e.g., halving, thirding and fifthing) and 
linked to region idea (e.g., thirds by fourths are 
twelfths). Risk: treated as rule-based procedure 

Count by quarters halves and thirds, 
including with mixed numerals. Locate 
and represent these fractions on a 
number line (ACMNA078) 

Locating fractions on an open number line invites the 
use of equipartitioning strategies based on 
benchmarks (e.g., halving, thirding and fifthing , etc.) 
and links to fractions as number idea. Risk: treated 
additively 

Recognise that the place value system 
can be extended to tenths and 
hundredths. Make connections between 
fractions and decimal notation 
(ACMNA079) 

Potential to relate place-value system 
equipartitioning and for each idea (i.e., for each one 
there are 10 tenths), see base 10 system as 
multiplicative. Risk: introduced before students 
understand whole number as multiplicative system 

Recall multiplication facts up to 10 × 10 
and related division facts (ACMNA075)  

Implies memorisation of facts, unclear as to how 
these are represented (see above). Risk: limited to 
equal groups, count of groups (i.e., ‘traditional tables’ 
representation) 

Explore and describe number patterns 
resulting from performing 
multiplication (ACMNA081) 

Potential to shift thinking from count of equal groups 
to factor or scalar idea to support more efficient 
mental strategies (e.g., 4 of anything is double 
double). Risk: treated as repeated addition 

4 

No reference to arrays, regions, Cartesian product, partition or quotition division 
No reference to benchmark percents (50%, 25%, 10% , etc.) 

Identify and describe factors and 
multiples of whole numbers and use 
them to solve problems (ACMNA098) 

Highly supportive of multiplicative thinking if based 
on array, region or area representations of 
multiplication and shift of thinking described above. 
Risk: considered in isolation from representations of 
multiplication 

Solve problems involving multiplication 
of large numbers by one- or two-digit 
numbers using efficient mental, written 
strategies and appropriate digital 
technologies (ACMNA100) 

Highly supportive of multiplicative thinking if based 
on array, region or area representations of 
multiplication and shift of thinking described above. 
Risk: strategies based on/limited to repeated 
addition, count all groups, rote learnt procedures 

Solve problems involving division by a 
one digit number, including those that 
result in a remainder (ACMNA101) 

Highly supportive of multiplicative thinking if based 
on sharing or ‘what do I have to multiply by’ (i.e., 
factor idea) 

Compare and order common unit 
fractions and locate and represent them 
on a number line (ACMNA102) 

Highly supportive of multiplicative thinking if based 
on equipartitioning strategies (e.g., halving, thirding 
or fifthing) and linked to fraction as number idea. 
Risk: treated as a iterative counting exercise 

5 

Recognise that the place value system 
can be extended beyond hundredths 
(ACMNA104) 

Highly supportive of multiplicative thinking if based 
on equipartitioning strategies and for each idea (e.g., 
for each tenth there are 10 hundredths, for each 
hundredth there are 10 thousandths and so on)—this 
involves recognising recursive, exponential nature of 
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the base 10 numeration system. Risk: limited to 
surface features 

Compare, order and represent decimals 
(ACMNA105)  

Representing/locating decimals on a number line 
highly supportive of multiplicative thinking if on 
equipartitioning strategies (e.g., tenthing) and for 
each idea. Risk: this becomes rule based 

Use equivalent number sentences 
involving multiplication and division to 
find unknown quantities (ACMNA121) 

Potentially supportive of multiplicative thinking 
where numbers renamed to support more efficient 
calculation. Risk: this becomes rote procedure 

 

No link between hundredths and percentages 

Identify and describe properties of 
prime, composite, square and 
triangular numbers (ACMNA122) 

Highly supportive of multiplicative thinking if based 
on array, region or area representations of 
multiplication and shift of thinking described above. 
Risk: taught in isolation from representations 

Compare fractions with related 
denominators and locate and represent 
them on a number line 

Highly supportive of multiplicative thinking if based 
on equipartitioning strategies and fraction as 
number idea 

Find a simple fraction of a quantity 
where the result is a whole number, 
with and without digital technologies 
(ACMNA127) 

Highly supportive of multiplicative thinking if related 
to partition division, fractions as operators and/or 
think of multiplication strategy 

Multiply decimals by whole numbers 
and perform divisions by non-zero 
whole numbers where the results are 
terminating decimals, with and without 
digital technologies (ACMNA129) 

Highly supportive of multiplicative thinking if based 
on area or factor representations of multiplication 
and partition division strategies (i.e., sharing and/or 
think of multiplication). Risk: procedures devoid of 
meaning, inability to check reasonableness of 
outcome  

Multiply and divide decimals by powers 
of 10 

Potentially supportive of multiplicative thinking if 
explored in relation to structure of the base 10 system 
of numeration. Risk: Meaningless procedures such as 
‘adding 0”, moving decimal point 

Make connections between equivalent 
fractions, decimals and percentages 
(ACMNA131) 

Highly supportive of multiplicative thinking if based 
on equipartitioning strategies, fraction as number 
idea—First mention of percentages. Risk: 
Meaningless rule-based procedures 

6 

Investigate and calculate percentage 
discounts of 10%, 25% and 50% on sale 
items, with and without digital 
technologies (ACMNA132) 

Supportive of multiplicative relationships if linked to 
equipartitioning strategies (e.g., halving, fifthing), for 
each and fraction as operator ideas and 
multiplication by decimal fractions. Risk: 
Meaningless rule-based procedures, inability to check 
reasonableness of results 

Investigate index notation and 
represent whole numbers as products of 
powers of prime numbers (ACMNA149) 

Highly supportive of multiplicative thinking if linked 
to for each and factor.factor.product ideas 

Investigate and use square roots of 
perfect square numbers (ACMNA150) 

Highly supportive of multiplicative thinking if linked 
to factor idea and think of multiplication strategy 

Apply the associative, commutative and 
distributive laws to aid mental and 
written computation 

First mention of these properties yet used in mental 
computation much earlier and 2 digit by 2 digit 
multiplication in Year 6. Supportive of multiplicative 
thinking where factors used 

Compare fractions using equivalence. 
Locate and represent positive and 
negative fractions and mixed numbers 
on a number line (ACMNA152) 

Highly supportive of multiplicative thinking if based 
on equipartitioning strategies and fraction as 
number idea. Risk: Taught in isolation, meaningless 
rule-based procedures 

Multiply and divide fractions and 
decimals using efficient written 
strategies and digital technologies 
(ACMNA154) 

Supportive of multiplicative thinking if based on 
equipartitioning representations, fraction as 
operator. Risk: Taught in isolation, meaningless rule-
based procedures 

Express one quantity as a fraction of 
another, with and without the use of 
digital technologies 

Highly supportive of multiplicative thinking if linked 
to fraction as quotient idea. Risk: Taught in isolation, 
meaningless rule-based procedures 

7 

Connect fractions, decimals and 
percentages and carry out simple 
conversions (ACMNA157) 

Supportive of multiplicative thinking if linked to 
fraction as quotient idea. Risk: Taught in isolation, 
meaningless rule-based procedures 
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Find percentages of quantities and 
express one quantity as a percentage of 
another, with and without digital 
technologies. (ACMNA158) 

Highly supportive of multiplicative thinking if linked 
to fraction as operator interpretation. Risk: Taught 
in isolation, meaningless rule-based procedures 

Recognise and solve problems involving 
simple ratios (ACMNA173) 

Highly supportive of multiplicative thinking if linked 
to fraction as ratio interpretation. Risk: Taught in 
isolation, meaningless rule-based procedures 

 

Investigate and calculate ‘best buys’, 
with and without digital technologies 
(ACMNA174) 

Highly supportive of multiplicative thinking if seen as 
application of proportional reasoning, related to 
fraction as quotient idea 

Use index notation with numbers to 
establish the index laws with positive 
integral indices and the zero index 
(ACMNA182) 

Requires multiplicative thinking and recognition of 
factor idea. Risk: laws treated in isolation from 
underpinning properties  

Solve problems involving the use of 
percentages, including percentage 
increases and decreases, with and 
without digital technologies 
(ACMNA187) 

Highly supportive of multiplicative thinking if linked 
to fraction as operator interpretation. Risk: Taught 
in isolation, meaningless rule-based procedures 

Solve a range of problems involving 
rates and ratios, with and without 
digital technologies (ACMNA188) 

Highly supportive of multiplicative thinking if linked 
to fraction as ratio. Risk: Taught in isolation, 
meaningless rule-based procedures 

Solve problems involving profit and 
loss, with and without digital 
technologies (ACMNA189) 

This is an application of ACMNA187 

Extend and apply the distributive law to 
the expansion of algebraic expressions 
(ACMNA190) 

Supportive of multiplicative thinking where linked to 
factor.factor.product idea and partitioning (both 
additive and multiplicative) 

8 

Factorise algebraic expressions by 
identifying numerical factors 
(ACMNA191) 

Supportive of multiplicative thinking where linked to 
factor.factor.product idea 

9 

Solve problems involving direct 
proportion. Explore the relationship 
between graphs and equations 
corresponding to simple rate problems 
(ACMNA208)  

Requires multiplicative thinking to be achieved with 
understanding 
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Although most students agree that mathematics is important and useful, many 
capable students choose not to pursue study of Mathematics when they have the 
choice. In this paper we describe a project-based learning approach to mathematics 
adopted in a Year 9–12 school in which none of the teachers were mathematics 
specialists. Data about students’ views of mathematics and their perceptions of 
mathematics learning approaches in their current school are presented. The results 
highlight the negativity towards mathematics that these students felt and the huge 
task faced by their teachers in attempting re-engage them with learning in the area. 

 
Engagement with mathematics is one of eight dimensions of attitude to the subject 
identifiable in the literature on students’ attitudes to mathematics (Beswick, Watson & 
Brown, 2006). Each of the eight dimensions are conceptualised as dichotomies: 
engagement or avoidance; liking or disliking; regarding mathematics as important or 
unimportant; useful or useless; easy or difficult; viewing oneself as good or bad at the 
subject (Ma & Kishor, 1997); feeling confident or anxious (Ernest, 1988); and believing 
mathematics to be interesting or uninteresting (McLeod, 1992). Disengagement with 
mathematics is thus part of a negative attitude to mathematics. 
 This paper reports on the attitudes to mathematics of Year 9–12 students enrolled in 
a school that had adopted a project-based learning approach across the entire 
curriculum. The students’ perceptions of mathematics learning at the school are also 
reported and the implications of the apparently toxic effect that years spent in 
mathematics classes appears to have on many students’ attitudes to the subject are 
discussed. 

Why attitudes matter 
Positive attitudes to mathematics have been associated with improved achievement in 
the subject (Ashcraft & Kirk, 2001) but negative attitudes to mathematics are prevalent 
among secondary school students. For example, students interviewed by Boaler (1994) 
described the mathematics they experienced in school as a boring, meaningless, 
individual activity. In the most recent Trends in International Mathematics and Science 
Study (TIMSS) Australian Year 8 students who reported liking learning mathematics 
achieved, on average, higher scores than their peers who did not express a liking for the 
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subject (Thomson, Hillman & Wernert, 2012). It is of concern, therefore, that the 
percentage of Australian students who indicated that they liked learning mathematics 
was 16% compared with the international average of 26%. At the other end of the 
spectrum, 45% of Australian Year 8s reported not liking mathematics learning 
compared to the 31% international average. These figures are consistent with the 
widespread concern among teachers in the middle years with student disengagement 
(Luke et al., 2003; Sullivan, Tobias & McDonough, 2006). 
 In addition, there is evidence that Australian students’ attitudes to mathematics 
decline with school Year level (Beswick et al., 2006). Beswick et al. (2006) found, for 
the 650 Year 5–8 students in their study, significant negative correlations between year 
level and overall attitude as well as the particular dimensions: 
interesting/uninteresting; engage/avoid; and like/dislike. The tendency for students to 
disengage with mathematics through the middle years of schooling is likely to 
contribute to the ongoing decline in numbers of students undertaking senior secondary 
and tertiary studies in mathematics and mathematics-related fields (Australian 
Mathematical Sciences Institute, 2013; McPhan, Morony, Pegg, Cooksey & Lynch, 
2008).  

Why do students disengage with mathematics? 
Many factors have been identified as contributors to student disengagement in the 
middle years of schooling and associated negative attitudes to learning and particularly 
to mathematics. They include inappropriate curricula, insufficiently challenging tasks, 
ineffective teaching, poor physical design of learning spaces, and societal changes 
related to technological and social developments (Luke et al., 2003). Parents are also 
influential with high parental expectations for academic achievement associated with 
greater student engagement (Chen & Gregory, 2010). 
 There is evidence that teachers’ beliefs about their students’ capacities to learn and 
their own efficacy in helping students to learn also have an impact on their students’ 
attitudes. For example, Midgley, Feldlaufer and Eccles (1988) reported that teachers of 
lower secondary school mathematics had lower expectations of their students’ learning 
and of their own efficacy in facilitating learning than primary teachers. They suggested 
this as an explanation for the decline in mathematics achievement across the middle 
years. However, from their large scale study involving Canadian secondary students 
from disadvantaged communities, Archambault, Janosz and Chouinard (2012) 
concluded that engagement and achievement are more likely to be related to students’ 
prior experiences of learning mathematics, and particularly success and difficulties that 
this has entailed, than to their teachers’ beliefs. They specifically referred to the impacts 
of ability grouping in this regard. Their findings suggested that the attitude and beliefs 
of an individual teacher over a single school year are unlikely significantly to influence 
their students’ engagement although they did appear to influence achievement. Long 
histories of lack of success with mathematics learning, therefore, appear to lead to 
entrenched disengagement that persists even if achievement can be boosted by an 
enthusiastic and encouraging teacher. 
 A survey of junior secondary Australian mathematics teachers found that 27% had 
studied no more than first year university mathematics and one third had undertaken 
no study of mathematics teaching methods (Harris & Jensz, 2006). Under-qualified 
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teachers are unlikely to present mathematics in inspiring and engaging ways even if 
they manage to convey the content in a mathematically correct manner. 
 Mathematics classroom cultures in which effort and achievement are not validated 
by the peer group—where adolescents’ needs for autonomy, identity and social success 
can be achieved by non-compliance, disengagement and lack of effort—have been 
identified as a powerful possible explanation for disengagement of middle school 
students (Sullivan et al., 2006). The fundamental nature of the needs that deliberate 
disengagement from learning can meet in these circumstances explains the difficulty 
teachers express in relation to motivating students to engage with learning (Sullivan et 
al., 2006). These authors suggested that the classroom culture may in fact be the most 
potent influence on student engagement. 

Re-engaging students with mathematics 
Attempts to re-engage students with mathematics or to prevent disengagement have 
tried to address each of the factors implicated in causing it (Tadich, Deed, Campbell & 
Prian, 2007). They have variously focussed on teachers and teaching, curricula design, 
and the learners themselves. Often curriculum re-design is accompanied by efforts to 
transform teaching approaches (e.g., Department of Education, Tasmania, 2002; 
Education Queensland, 2002). Approaches adopted in part with the aim of improving 
the engagement of middle school students include integrated and cross-disciplinary 
approaches (Wallace, Sheffield, Rennie & Venville, 2007). Participants in Wallace et 
al.’s study reported the use of teaching practices in these contexts that included multi-
age student groupings, single teachers teaching across multiple learning areas and/or 
teaching the same students for several years, and flexible timetabling arrangements. 
The use of mathematics problems embedded in meaningful contexts has also been 
promoted as a way of improving engagement with mathematics (Jurdak, 2006). 
Establishing the effectiveness of these innovations in improving student engagement 
has been difficult as a result of the multiplicity of variables inherent in classrooms.  
 Approaches focussing on students have included influencing students’ views about 
schooling and their own capacities to learn, and helping them to see the value of school 
achievement (Tadich et al., 2007). Others have recognised the importance of helping 
students to acquire skills that facilitate engagement with, and achievement in, 
mathematics. These include metacognitive strategies (Stillman, 2001), and study skills 
(Munns & Martin, 2005, cited in Tadich et al., 2007). 

Project-based learning 

Project-based learning involves students exploring problems or questions of interest to 
them. These questions tend to more closely resemble the kinds of problems 
encountered outside of school than do typical school tasks. The approach is 
characterised by student autonomy and choice (Lam, Cheng & Ma, 2009). Improved 
student engagement is among the benefits associated with project-based learning (Lam 
et al., 2009) along with opportunities to develop capacities for creative thinking, 
innovation (Lee & Breitenberg, 2010) and independent work (Doppelt, 2009). 
 Project-based learning principles are used in Australian schools associated with Big 
Picture Education Australia (BPEA). In some of these schools, Big Picture runs as a 
stream for selected students alongside a traditional curriculum structure for other 
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students. In other cases, Big Picture principles have been adopted to a greater or lesser 
extent for all students in the school. Students in Big Picture schools or programs work 
towards five broad learning goals (BPEA, 2011) that include Quantitative Reasoning 
(QR).  

Quantitative reasoning 

In spite of the relevance of mathematical content to QR, it is important to note that QR 
cannot be equated to the traditional school subject of mathematics (Down & Hogan, 
2010). Nevertheless, the links are sufficient for the words to be used essentially 
interchangeably in the context of this study. Thornton and Hogan (2003) linked the 
term QR to quantitative literacy as used by Steen (e.g., 2004) and to the notion of 
numeracy that has been defined by the Australian Association of Mathematics Teachers 
(1997, p. 15) in terms of being numerate—that is, able to “use mathematics effectively to 
meet the general demands of life at home, in paid work, and for participation in 
community and civic life”. QR is one of three of BPEA’s five learning goals that use the 
term “reasoning” defined as “the process of forming conclusions, judgments, or 
inferences from facts or premises” (Down & Hogan, 2010, p. 63). This definition of 
reasoning is consistent with the description of the Proficiency Strand of the same name 
in the Australian Curriculum: Mathematics (Australian Curriculum Assessment and 
Reporting Authority [ACARA], 2012). 

The QR project 
The project arose from a concern of the school principal and staff that a completely 
project-based learning model may not provide students with appropriate opportunities 
to meet all of the requirements of the Australian Curriculum: Mathematics. As 
described by Beswick, Callingham and Muir (2012), none of the teachers were specialist 
mathematics teachers, and although they demonstrated adequate mathematical 
knowledge for everyday purposes, most lacked confidence in their ability to assist 
students to develop their QR capacities. The project provided collaboratively designed 
professional learning for teachers, aimed at assisting them to identify opportunities for 
the development of QR in their students’ projects, and locate appropriate resources for 
teaching QR; building their confidence that the curriculum could be covered, at least as 
well in a project-based setting as in traditional contexts. 

The school 

The project was conducted in a Tasmanian Year 9–12 school that had been in operation 
for one year when the project commenced. Most Tasmanian secondary schools cater for 
students in Years 7–10, with colleges catering for Years 11 and 12 located in larger 
centres. In addition to the novelty of the year level range for which the school catered, it 
had project-based learning across the entire curriculum as part of an attempt to fully 
implement the BPEA model. Important principles underpinning Big Picture education 
include a focus on each learner as an individual, and recognition of the role of families 
and the broader community in helping each learner to pursue his/her interests and 
realise his/her potential. In keeping with this, teachers (known as advisors) each 
worked with a group of approximately 16 students to develop individual projects, and 
find opportunities for students to engage in the adult world through internships in 
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workplaces. Students were also allowed a greater degree of autonomy in relation to 
dress and the use of their time than is typical in more traditional secondary schools. 
The physical spaces of the school provided a technology rich environment with spaces 
for large and small group work, as well as individual work, and comfortable and flexible 
furnishings. 
 The school catered for a diverse range of students. All had experienced mathematics 
learning (at least until Year 8) in another context. Their reasons for choosing to come to 
the school varied, but many had experienced difficulty in a traditional secondary school 
setting, with many having disengaged with learning to a greater or lesser extent. 

Participants 

Participants in the survey part of the study were 33 of the approximately 130 Year 9–12 
students who comprised the school’s enrolment. Five of these students were in Year 9, 
three in Year 10, thirteen in Year 11, eleven in Year 12, and one did not indicate a year 
level.  

Instruments and procedure 

The student survey comprised four sections, three of which were made up of Likert type 
items to which respondents indicated the extent of their agreement from Strongly 
Disagree to Strongly Agree on a 5-point scale. Sections 2 and 3, which examined the 
students’ perceptions of learning QR at the school (10 Likert type items) and their 
attitudes to QR (16 Likert type items), are the relevant sections for this paper.  
 The items on QR learning were similar to the classroom environment items used by 
Beswick et al. (2006) but adapted to relate to pedagogies considered desirable in a 
project-based learning context. The 16 ‘attitude to QR’ items were also adapted from 
those used by Beswick et al. (2006) by a simple substitution of ‘mathematics’ with ‘QR’. 
Two of the 16 items related to each of eight dimensions of attitude to mathematics 
identified in the literature. The surveys were administered to individual students 
during the second quarter of the school year.  

Results 
Table 1 shows the percentage of participating students who Agreed or Strongly Agreed 
with each of the statements, along with the means and standard deviations of the 
participants in the QR project to the 16 attitude to QR items. Scores for the italicised 
items were reversed for the calculations of the means and standard deviations: a higher 
mean indicates a more positive attitude. Similar data for same items (with 
‘mathematics’ substituted for ‘QR’) from Beswick et al. (2006) are also provided. The 
participants in Beswick et al.’s (2006) were 650 students in Years 5–8 in traditional 
Tasmanian primary and secondary schools.  
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Table 1. Means and standard deviations of students’ responses to Likert type items. 

 
QR project (n=33) 

Beswick et al. 
(2006) (n=650) 

Attitude Items % A or 
SA Mean  

Std. 
Dev.  Mean  

Std. 
Dev. 

1. I find QR interesting. 18.2 2.64 1.19 3.50 1.08 

2. Other learning goals are more important 
than QR.  

30.4 2.85 1.06 3.13 0.97 

3. I do as little QR as possible when I get the 
choice. 

27.3 3.15 1.03 3.42 1.20 

4. I enjoy QR lessons. 21.2 2.88 1.02 3.49 1.27 

5. I find most QR problems fairly easy. 21.3 2.88 1.02 3.22 1.07 

6. QR helps to develop my mind and teaches me 
to think. 

42.5 3.33 0.85 3.89 1.02 

7. QR we learn at school is important in everyday 
life. 

63.7 3.76 0.75 4.13 1.06 

8. QR makes me feel uneasy and nervous. 27.3 3.03 0.98 3.65 1.20 

9. QR is dull and uninteresting. 39.4 2.81 1.31 3.56 1.25 

10. I enjoy attempting to solve QR problems. 18.2 2.67 0.99 3.55 1.17 

11. QR problems are nearly always too difficult. 18.2 3.01 0.79 3.59 1.02 

12. I usually keep trying with a difficult problem 
until I have solved it. 

24.3 2.97 0.98 3.66 1.09 

13. I do well at QR. 21.3 2.85 1.03 3.44 1.21 

14. Having good QR skills will help me get a job. 60.7 3.64 0.93 4.38 0.97 

15. Most of the time I find QR problems too easy. 15.2 3.21 1.02 2.60 1.02 

16. I sometimes get upset when trying to solve QR 
problems. 

45.4 2.58 0.94 3.70 1.27 

 
 At least 60% of respondents agreed that QR was important in everyday life (Item 7) 
and helpful in getting a job (Item 14). More than 40% also Agreed or Strongly Agreed 
that QR develops the mind (Item 6) and just over 45% indicated that they sometimes 
became upset when trying to solve QR problems (Item 16). For every item the mean 
response of students in the QR project was lower than that of the participants in 
Beswick et al.’s study. 
 Table 2 shows the percentages of respondents indicating Agreement or Strong 
Agreement with each of the QR learning items along with their means and standard 
deviations. Nearly 80% Agreed or Strongly Agreed that that their teacher encouraged 
them to look for QR opportunities in all their work (Item 2), and two thirds Agreed or 
Strongly Agreed that they were encouraged to present QR in a variety of ways (Item 3) 
and helped them to identify errors in their work (Item 8). According to the students, 
the least common of the QR learning experience was being asked to write a QR report 
(Item 4). 
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Table 2. Means and standard deviations for responses to QR learning items 

When I work on QR my teacher … 
% A or 
SA 

Mean 
(n=33) 

Std. 
Dev.  

1. asks me to explain my mathematical understanding. 51.6 3.42 0.90 

2. encourages me to look for QR opportunities in all my work. 78.8 4.06 0.79 

3. encourages me to present QR in a variety of ways. 66.7 3.76 0.79 

4. usually asks me to write a QR report to show my 
understandings. 

27.3 2.94 0.83 

5. stresses the importance of proportional reasoning such as 
understanding ratios and percents. 

45.5 3.42 0.75 

6. can identify appropriate opportunities to develop my QR. 45.5 3.48 0.76 

7. shows where I can find appropriate resources to help me 
explore QR ideas. 

42.4 3.45 0.75 

8. helps me to identify QR errors in my work. 66.7 3.70 0.73 

9. gives me confidence that the mathematics curriculum is being 
covered as well as in a traditional mathematics classroom. 

45.4 3.52 0.83 

10. helps me to understand maths that I missed in earlier grades. 48.5 3.42 0.83 

Discussion 
On a positive note, the percentage of students in this study who reported liking 
mathematics was greater than that for Year 8 students in the 2011 TIMSS study 
(Thomson et al., 2012).The attitudes towards QR of the Year 9–12 students in the 
school in which the QR project was conducted were more negative than the Year 5–8 
students described by Beswick et al. (2006) and Watson et al. (2007). Beswick et al. 
noted a decline with year level in attitudes to mathematics of the students in their 
study; it could be that the more negative attitudes of the participants in this study are a 
reflection of further progression of this trend. Alternatively (or additionally) the 
characteristics of this particular cohort that included, for many, factors that motivated 
them to change schools when such a transition was not necessary, may also have 
contributed to greater disengagement with, and more negative attitudes to, 
mathematics (QR). 
 The principles that underpinned the way in which the school operated incorporated 
many of the elements identified in the literature as likely to influence students’ 
engagement and attitudes positively. These included the involvement of parents and 
other significant adults in all aspects of each student’s learning, the focus on meeting 
the needs of individual learners and designing curriculum content to match their 
interests, and the emphasis on building positive advisor–student and peer relationships 
through small groupings and individual attention. One would expect that the needs for 
autonomy, identity and social success highlighted by Sullivan et al. (2006) would have 
been met in this school environment to a greater degree than in most others. 
 Nevertheless, none of these students had been at the school for more than one 
complete year and so had experienced mathematics learning in traditional settings for 
from 9 to 12 years prior to coming to experiencing project-based learning. The results 
of this study are consistent with Archambault et al.’s (2012) conclusion that a single 
year of enthusiastic and encouraging teaching is unlikely to be sufficient to reverse 
disengagement that has resulted from years of lack of success—evidenced in this study 
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by the fact that only about one fifth of students agreed that they did well at QR (see 
Table 1, Item 13). 
 The fact that none of the teachers in the school were mathematics specialists is a 
cause for concern as is the fact that many, perhaps most, of the teachers these students 
had encountered in mathematics classes in prior years were also likely to have lacked 
specialised expertise (Harris & Jensz, 2006). It must be noted though that these 
teachers were doing quite a bit right in terms of helping their students to learn QR (see 
Table 2). Given the extent of the students’ negativity towards mathematics it is not clear 
that teachers with greater expertise would be more effective in turning their attitudes 
around. 
 The data also show that it is possible to convince students of the importance and 
usefulness of mathematics, both for everyday life and future careers, but that this is not 
necessarily in anyway related to other more emotive aspects of attitude to the subject, 
including their engagement with it. Students are able simultaneously to acknowledge 
the usefulness and importance of mathematics, and to avoid it.  

Conclusion 
The QR project was a small study and the number of students who participated in the 
survey was small. Nevertheless, the results suggest that for some students, arguably too 
many, years spent in mathematics classes have a toxic effect on their attitude to the 
subject. Furthermore, the impacts of this experience are difficult to reverse and are 
likely to take sustained experiences that counter those of the past and build learners’ 
sense of themselves as competent mathematics learners and users. Attention to 
students’ attitudes, and the ways in which typical mathematics teaching contributes to 
them, from the earliest years is warranted. 
 Efforts aimed at promoting the many applications of mathematics in current society 
and its crucial role in many jobs (as detailed, for example, by Deloitte (UK) for the 
Engineering and Physical Science Research Council, 2012) seem unlikely to be effective 
in addressing the decline in enrolments in advanced senior secondary mathematics and 
mathematically based university courses. 
 This paper presents quite a depressing picture of disengagement with mathematics 
and the vastness of the task of reversing the problem once it occurs. Its value is in 
drawing attention to the extent of the problem for some students and the need to 
rethink mathematics teaching in quite fundamental ways. The literature suggests that 
the practices employed in this school and the principles that underpin them are worth 
pursuing, but patience will be needed in drawing conclusions about their effectiveness 
in practice in relation to students’ attitudes to mathematics. 
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Reasoning is one of the proficiency strands highlighted in the Australian 
Curriculum: Mathematics. This is because it is the heart of mathematical work. 
However, because the content strands receive the bulk of the explicit description in 
the document, it can be difficult to know how to ensure that reasoning plays a key 
role in the classroom. This paper presents strategies to enhance the nature and 
extent of reasoning activity taking place in classrooms, and discusses how to build a 
culture of justification, use questioning techniques to encourage reasoning, and 
develop tasks that require higher order thinking.  

Introduction 

An anecdote from the distant past 

My mind is taken back to 1978. I am in Year 9, in a maths classroom in a standard 
1950s-built Tasmanian high school. It is the advanced maths class, where we get extra 
maths as an elective, on top of regular maths classes. There are about 28 students in the 
class, only four of them girls (typical for the time), and we are being taught by Mr Smith 
who is the senior master for maths. We have been doing Pythagoras’ theorem, and, in 
this time where calculators are only just being introduced into schools, all of the 
answers to the problems are beautiful whole numbers. Thus we meet the famous (3,4,5) 
triangle, and the (6,8,10) triangle (and can see the connection between the two, 
although we explore that no further); and we also meet some of the other Pythagorean 
triples like (5,12,13), (7,24,25), and (9,40,41).  
 At this point, someone notices something about the numbers in our triples: the first 
is odd, and the final pair are consecutive. Mr Smith encourages us to test this and we 
find (11,60,61), giving our newfangled calculators a workout in the process. Someone 
else notices that in the sequence 12, 24, 40, 60—formed by the second numbers in our 
sequence of triples—the difference between each pair of consecutive numbers goes up 
by 4 as 12, 16, 20. This leads us to conjecture that (13,84,85) is another of these special 
triples. We reach again for our calculators (a thrill to use but it still feels like cheating), 
and the new example is confirmed.  
                                                

2  From Monty Python’s Flying Circus, episode 29.  
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 We try to articulate what we have discovered, and thus “9CHAM’s Theorem3” is 
born. It asserts that for every odd number there is a Pythagorean triple—not that we 
know this name at this time—where the remaining two numbers are consecutive. Mr 
Smith is as excited about this as we are; it is new to him as well. There is a small 
amount of frustration, however, because although we are confident about the result and 
can see the patterns, we cannot quite articulate it mathematically. I think, too, that a 
few of us recognise that, in fact, we cannot be absolutely sure that this result always 
holds, partly because we have not been able to nail it down properly, and partly because 
we think it needs a proof like the ones we had been doing in geometry with a QED 
thingy at the end. 

Commentary from the present 

Well, my memory is hazy, and I confess I cannot be sure that the events above occurred 
in exactly the way I have described, but most of it is roughly accurate, and I do 
remember being excited during the discovery of 9CHAM’s Theorem. There was a buzz 
in the classroom as we spotted patterns, and conjectured, and tested, and tried to 
explain what was happening. I do not know if everyone in the class felt it, or followed 
the arguments or all of the discussion, but it seemed as if they did. Mr Smith allowed us 
to conduct the investigation—indeed, he investigated with us (no, I do not think he just 
pretended for our sakes), and he encouraged the conjecturing, testing, and articulating 
that led us to the final result. Although this was the most striking example, there was 
generally always a positive culture of discussion and reasoning in that classroom. 
 Two years later my Year 11 teacher showed me the proof of 9CHAM’s Theorem. Yes, 
it really is true (it is also relatively well-known, though not to my Year 9 class and Mr 
Smith). As it happens, there is even more to it. It was nice to have the result properly 
articulated and proven, but I do recall a vague disappointment that I had not been able 
to prove it for myself. (To be fair, I do not think I had really tried to prove the result for 
myself in the intervening years.) Partly this was because the Year 11 teacher’s proof was 
actually of an even more general result, and I could not fully link it to the specific cases 
that we had encountered in 9CHAM’s Theorem, which made my Year 11 teacher’s proof 
not exactly the one I thought I was looking for. In hindsight, though, I am wondering 
how much I could have done, with the right guidance. I am not sure I would have been 
able to determine the necessary algebraic formulation of the patterns, but I do think I 
could have completed, for myself, the algebraic manipulation that proves the result … 
and I also think I could have been scaffolded to find the algebraic formulation of the 
9CHAM’s Theorem special cases. These experiences raise important questions about 
what reasoning is possible in classrooms and how to get it to happen. 

Reasoning and the curriculum 
It is now 2013. I am no longer a high school student; my job now is to prepare 
prospective teachers to teach high school mathematics. What should they be teaching? 
What should be going on in their Year 9 classrooms? 

                                                

3 CHAM = Clarence High Advanced Mathematics, and, yes, I know now that at the time it was only a 
conjecture … but you should tell that to everyone who ever talked about Fermat’s Last “Theorem” 
before 1994. 
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 The last 35 years have seen the demise of geometric proof from the curriculum, 
which has been bemoaned by those who see it as epitomizing a central tenet of the 
discipline of mathematics: namely deductive reasoning. On the other hand, for others 
the loss is unlamented, since many students struggled with it, it appears to have little 
value to real world applications, and its removal allowed space in the curriculum to 
emphasise other aspects of mathematical activity and content. Whatever your view of 
the place of geometric proof in the curriculum, however, I do not believe that the 
reduced emphasis on it was intended to imply a reduction in reasoning in the 
curriculum. Nevertheless, this may be what happened. Stacey (2003), in examining the 
results of the TIMSS 1999 video study, discussed evidence for a “shallow teaching 
syndrome” in Australian Year 8 mathematics classrooms. She pointed out the excessive 
use of repetition in the sequences of problems assigned to students, the use of problems 
of low complexity, and the absence of mathematical reasoning in the activities of the 
classroom, and suggested that these may play a role in the differences in outcomes from 
international testing between Australian students and their international counterparts.  
 Reasoning is certainly specified in curriculum documents as being an essential 
component of mathematics education. Like various curricula before it (e.g., Victorian 
Curriculum and Assessment Authority, 2008, with its “Working Mathematically” 
strand), the recently released Australian Curriculum: Mathematics (Australian 
Curriculum, Assessment and Reporting Authority, 2013) places emphasis on reasoning. 
It is one of four proficiency strands, together with fluency, understanding, and problem 
solving. In the curriculum document, these four strands are treated differently from the 
content strands number and algebra, measurement and geometry, and statistics and 
probability. In some respects this is not surprising, since content and proficiency are 
quite different from each other as aspects of mathematical knowledge. However, if 
teachers are looking to the curriculum document as a guide for what they are to teach, 
then there is potential for them to underestimate the importance of reasoning. 
Although I am not claiming that volume of text in a curriculum document is indicative 
of the weight that is intended to be given to a curriculum strand, it is rather telling that 
the vast majority of the Australian Curriculum: Mathematics is taken up with the 
content strands. In part this is because the content strands have tended to be 
encyclopaedic, spelling out all the topics to be covered. In contrast, the potential 
pervasiveness of reasoning within mathematics means that the curriculum indicates 
the scope of reasoning only by giving a few examples of where it might arise, rather 
than trying to specify all the places where it could be incorporated. This pervasiveness—
and the limited collection of supplied examples—puts the onus on the teacher to 
identify places where reasoning can be highlighted. Furthermore, the fact that some 
aspects of mathematics can be (and sometimes are) “taught” in classrooms in the 
absence or limited presence of reasoning means that it is might be useful to look at 
strategies that can build a culture of reasoning in the classroom.  

Strategies for fostering reasoning 
My suggestions in what follows have been inspired by a number of sources, including 
the work of Watson and Mason on questions and prompts for the mathematics 
classrooms (1998) and constructing examples (2005); the work of Stein, Grover, and 
Henningsen on task selection and implementation (1996; and also Henningsen & Stein, 
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1997); the list of habits of mind posited by Cuoco, Goldenberg, and Mark (1996); and 
Swan’s work on strategies for improving learning (2005); together with other long-
forgotten sources over the years, including teachers and mentors. The suggestions are 
intended to provide strategies, approaches and ideas for how to use tasks and questions 
to foster a stronger culture of reasoning in the classroom. 

Tasks 

Optimising routine tasks 

Routine ‘exercises’ are an important part of mathematical learning, not least because 
they build fluency and understanding. You can maximise their effectiveness for 
reasoning by discussing why the steps follow in sequence, and how starting off with the 
conditions in the problem statement leads to the conclusion or answer in a logical way 
based on mathematical properties. 

Selecting tasks that foster reasoning 

Look for tasks that require multiple steps to solve, allow multiple entry points, provide 
opportunities to make links to other results, can be extended (see further comments 
later), and require or allow the opportunity for conjecturing. Do not underestimate 
your students’ capacity to engage in “hard” problems, in a supportive environment. 

Maximise the reasoning afforded by a task 

Sometimes it can be difficult to identify and develop all the reasoning opportunities 
inherent in a particular task. A classic example is the use of pattern-spotting activities 
(e.g., how many matches are there in the tenth diagram in the sequence |_|, |_|_|, 
|_|_|_|, |_|_|_|_|, …?). Many students will be able to identify the pattern, but more 
work and reasoning is required to describe the pattern using a mathematical 
formulation, and to justify the validity of the formulation. This principle means that it 
is important for the teacher to have tried the task, and to have thought in advance 
about what learning opportunities it offers and how to bring these out in the classroom. 

Adapting tasks 

Look for ways to open up a task to make it amenable to greater opportunities for 
reasoning. Routine exercises often can be turned into richer tasks, with a little thought. 
Try ‘reversing’ the task, by taking the answer and posing new, related tasks with that 
answer (e.g., What other numbers only have 3 factors? Can you find other equations of 
lines that pass through (2, 3)? What other parallelograms could you construct if (1, 2) 
and (3, 7) are vertices on one side?). Try asking “what if?” questions (e.g., If that angle 
changed from 30° to 60° what would happen to the remaining angles in the triangle? 
What would happen to the volume if the dimensions of a prism were doubled?) 

Reasoning in real-world tasks 

Steen (1999) points out that formal deductive reasoning is needed only rarely for real 
world problems; but of course this is not the only type of reasoning that can and should 
be fostered in classrooms. Working with real world problems—with their ambiguity and 
the need for modelling and approximation—provides opportunities for reasoning while 
devising models that ensure a good match between the model and the real-world 
situation, examining the impact of variations in the model’s assumptions, and checking 
the plausibility of numerical solutions. 
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Questions 

There are many kinds of teacher and student questions that can foster reasoning. The 
distinction between a task and a question is sometimes unclear, and so there is some 
overlap among the categories of questions suggested in what follows and with some of 
the principles suggested earlier for developing and using tasks. 

• Questions that ask for justification (e.g., Why can you perform that step? Can you 
explain why the mean changes by so much when you remove that outlier?) 

• Questions that allow reflection on or development of the general principles that 
are evident in a specific problem. Asking for “another example” is a powerful way 
of doing this (see Watson & Mason, 2005) (e.g., Can you give me another example 
of a line parallel to y = 3x? Can you find an example of a number which is larger 
than its square? And another? And another?) 

• Questions that encourage students to conjecture (e.g., Can you describe the 
pattern? What would happen if the coefficient of x2 changed?) 

• Questions that encourage students to test and question assumptions (e.g., Can 
you find an example that doesn’t work? What if it wasn’t a right-angled triangle?) 

• Questions that encourage students to explore and experiment (e.g., How rare is it 
to get 5 heads (or tails) in a row when tossing a coin ten times? Do all 
quadrilaterals tessellate?). Comments from the discussion on pattern-spotting are 
relevant here: such experiments are usually only part of the story, and generally 
they should be a precursor to a more rigorous and reasoned analysis. 

Classroom culture 

It can take time to develop the culture of the classroom so that reasoning is encouraged 
and valued. Teachers will need to model reasoning and to ask questions requiring it. 
The classroom needs to be a supportive environment in which students can make 
conjectures and put forward their reasoning without risking their self-worth. At the 
same time, it is important for students to know that the ideas are testable and that 
questioning, validating, discussing, justifying, and disproving are all essential parts of 
the reasoning process.  
 Teachers can also encourage students to look for generalisations and to encourage a 
sense of wonder. This can be habituated by encouraging students to reflect on the tasks 
they have completed and ask themselves, “What happens if…?” or “Is there a sensible 
‘next question’ I could ask about this situation?” A teacher’s own enthusiasm for 
reasoning processes can also foster an environment in which reasoning is viewed as 
engaging and stimulating work, if not actually enjoyed and valued.  

Other issues 

The role of content knowledge and pedagogical content knowledge 

Although these strategies may help to foster a culture of reasoning in the classroom, 
key roles are played by content knowledge and pedagogical content knowledge. A 
teacher needs mathematical knowledge to determine the potential of a task and the 
possible directions it might lead. Moreover, the choice of task alone is not enough. 
Stacey (2003) in reviewing the work of Stein and Henningsen and colleagues, points 
out that “although good tasks might seem to be the causal mechanism, the teacher 



CHICK 

MATHEMATICS: LAUNCHING FUTURES 
70 

influences the choice, timing, and detail of their implementation in classrooms. A 
lesson may be more or less successful in sustaining high level thinking, depending on 
the actions and pedagogical decisions of the teacher within the classroom” (p. 121). 
Sullivan, Clarke, and Clarke (2009) also discuss the challenges of turning a task into 
classroom activity that provides genuine learning opportunities. There are many 
mathematical and pedagogical decisions that a teacher needs to make in advance and 
in the hurly-burly of actual teaching in order to maximize reasoning opportunities. One 
particular challenge for the teacher is to interpret, validate, and counter students’ 
reasoning as required; and also to engage in his or her own mathematical reasoning 
during the lesson, by constructing examples and counter-examples that may further 
develop learning. 

Classroom management 

As suggested earlier, building a culture of reasoning in the classroom requires that the 
teacher build an atmosphere of respect for students and for the idea of determining the 
usefulness or validity of ideas. This requires management of the discourse that take 
place, so that it is respectful of others, and opinions are backed by reasons or 
justification. Teachers should ensure that thinking time is allowed, and that students 
are given an opportunity to contribute regardless of the speed at which their idea was 
determined (it may be worth having a frank discussion with students about the merits 
and fairness of the strategies you use to select students to give their responses). 
Monitor students as they work and ask for their conjectures and reasons. This 
monitoring can also allow teachers to be strategic in choosing contributions from 
students. Use mini whiteboards as a scratchpad for working, or a place to record 
conjectures, or to vote for a conjecture (by having students “vote” they are forced to 
commit to one hypothesis over another; however, students must also learn that 
“popular opinion” is not actually an appropriate reasoning strategy).  

An example 
The following set of questions provides an example of a series of tasks and questions 
that will provide students with the opportunity to explore and reason, in this case with 
geometry. The sequence might be conducted with any grade level from 5 to 12. 
Naturally, you might expect different levels of rigour and/or formality in the reasoning 
from different groups of students, but, regardless of the level, the tasks allow scope for 
rich discussions, exploration, conjecturing, testing, and justifying.  
 The sequence was inspired from the single question “How many right angles can a 
pentagon have?” from Watson and Mason (1998).  

Right angles in polygons 

• How many right angles can a quadrilateral have? [Explore this. Have you covered 
all possibilities?] 

• Can you have a quadrilateral with exactly two right angles, in which the angles are 
adjacent to each other? Why? 

• Can you have a quadrilateral with exactly two right angles, in which the angles are 
opposite each other? Why? 

• Can you have a quadrilateral with exactly three right angles? Why? 
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• Can you have a quadrilateral with one right angle and an obtuse internal angle? 
• Can you have a quadrilateral with one right angle adjacent to an obtuse internal 

angle? 
• How many right angles can a pentagon have? [Have you covered all possibilities? 

Did you only think of the regular pentagon at first?] 
• Can you have a pentagon with exactly four right angles? Why? 
• How many right angles can a hexagon have? [Have you covered all possibilities? 

Did you only think of convex hexagons at first?] 
• Is it possible to get four right angles as the internal angles of a hexagon? Why? 
• Is it possible to get more than four right angles as the internal angles of a 

hexagon? Why? 
• Why does the hexagon have to be convex if you have four or more right angles? 
• What’s the next question that we could consider? 

Conclusions 
Building a culture of reasoning is not easy. It demands significant content and 
pedagogical content knowledge as well as classroom management skills. Yet there are 
rewards. Research suggests that student outcomes are better, which is already a 
favourable result; but the anecdotal evidence also suggests reason-filled classrooms 
have a vibrant atmosphere with engaged students in which the discipline of 
mathematics is not only explored and learned, but is actively experienced by students 
who are actually working mathematically. 
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With the increased magnification of Algebra in the Australian Curriculum, many 
teachers, especially those in the early, primary and middle years cohorts, feel 
inadequate with the content to be taught. A professional learning (PL) model to 
address this was designed to enhance teachers’ content and pedagogical knowledge, 
provide sufficient time and resources, address identified needs while modelling 
high quality teaching. The research component of the program aimed to discover 
whether the teachers’ confidence, attitudes and beliefs about Algebra improved as a 
result of the experience and if so, whether similarly structured PL might be 
employed for a more generalised population. 

Introduction 
Norton and Windsor (2008) state that confidence and competence in Algebra is an 
important filter for more advanced courses in mathematical thinking and problem 
solving. Edwards (2000) calls Algebra a ‘gatekeeper’ to other academic fields and that 
participation in it increases vocational possibilities. There does not seem to be 
contradictory literature in relation to the importance of Algebra, and yet prior to the 
introduction of the nationwide Australian Curriculum: Mathematics (ACM) (ACARA, 
2011), Algebra was a strand of mathematics which did not enjoy prominence in many 
Western Australian primary schools. 
 In the previously mandated Western Australian Curriculum Framework 
(Curriculum Council, 1998), Algebra was separated from the Number strand and placed 
under a heading of Pre-Algebra and Algebra. Anecdotal comments from teachers 
suggested that this gave them licence to avoid Algebra as being something in the 
domain of upper primary or lower secondary school and rather to concentrate on the 
arithmetic aspects of the Number strand. This avoidance occurred despite researchers 
(Chick & Harris, 2007; Kieran, 2006) stressing the importance of getting primary 
school students to analyse relationships, generalise, predict and notice structure, all of 
which are foundational for the conventional algebra encountered later. 
 With the introduction of the Australian Curriculum: Mathematics the topic of 
Algebra has received some greater prominence with the placing it alongside the 
Number strand to highlight the very strong links between the two. The re-emergence of 
prominence has prompted some teachers to re-evaluate their capacity to teach this 
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subject. This is problematic as most primary teachers have little expertise in Algebra 
(Chick & Harris, 2007), and little confidence (Norton & Windsor, 2008). It is also 
generally recognised that the traditional approaches to teaching algebra have met with 
limited success (Norton & Irvin, 2007). Yet, as Norton and Irvin report, there are 
solutions to the issue of limited success. These are: 

• Making explicit algebraic thinking inherent in arithmetic in children’s earlier learning; 
• Explicit teaching of nuances and processes of algebra in an algebraic and symbolic 

setting, especially in transformational activities; 
• Using multiple representations including the use of technology; and 
• Recognising the importance of embedding algebra into contextual themes (p. 552). 

 Further, with the continued growth of Information and Communication 
Technologies (ICT), some of the tedious arithmetic calculations can be avoided. Ploger, 
Klinger and Rooney (1997) assert that when technology is used as a tool to help prepare 
students for Algebra, they can generate the effects of algebraic transformations on 
familiar numbers. The technology relieves them of the boredom of the crunching of 
numbers and leaves them with space to analyse the effects. 
 This literature, and further literature regarding Mathematics Knowledge for 
Teaching (MKT) (Ball, Thames & Phelps, 2008; Hill, Schilling & Ball, 2004), 
Pedagogical Content Knowledge (PCK) (Ball, Thames & Phelps, 2008; Park & Oliver, 
2008; Shulman, 1986) and effective Professional Learning (PL) (Clarke, 2003; Cohen & 
Hill, 2000; Supovitz, Mayer & Kahle, 2000; Supovitz & Turner, 2000) was used to 
underpin a series of PL sessions and a restricted analysis of the benefits of that PL. 
 The aim of this project was to investigate whether PL could improve teachers’ 
confidence, attitudes and beliefs for the ACM sub-strand of Algebra. Specifically, PL 
designed around subject matter knowledge and pedagogical knowledge was 
investigated. 

Design of the professional learning program 
The participants in the PL program ranged from early childhood teachers to secondary 
teachers of mathematics. Some were the mathematics co-ordinators for their schools 
and others were full-time classroom teachers. All participants felt they needed more 
grounding in algebraic content and how to teach it in such a way that students would 
not find it daunting. The PL described in this paper was carried out over a full year, 
with five half-day contact sessions and support by the PL facilitators available via email 
in between times. There was also an opportunity for the participants to attend one or 
two days with another expert presenter who tailored his program to complement what 
was being covered in the PL. 
 In designing the PL, several big ideas were considered. Firstly, what were considered 
to be the ‘big ideas’ of primary algebra were identified as Pattern, Equivalence and 
Function. Secondly, the structure to be used throughout the PL was decided upon. 
Drawing upon the research of Clarke (2003), Guskey (2003) and InPraxis (2006) it was 
decided that the model would aim to enhance both content and pedagogical knowledge 
within a collaborative and professional learning community where inquiry was 
encouraged. Sufficient time and resources would be provided to the teachers who could 
design lessons and trial within their classrooms the ideas gleaned, reflect on that 
process and report back to the group. It was also believed that it was imperative that 
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high quality teaching practice was modelled by the PL leaders at all times, so that the 
teachers could see what the lessons could actually ‘look like’ in their classrooms. 
 As there was a perceived lack of confidence in teaching Algebra, it was viewed as 
important to cover the content knowledge in the least threatening manner possible. The 
idea agreed upon was to set up a professional learning community where the 
participants worked through the learning activities as their students would. In this way 
the content was presented from an early childhood perspective through the primary 
years and to the middle years, so the developmental aspects were made clear. The 
pedagogical approach in each case was one which was appropriate for students, 
following a working mathematically approach, embedding the ACM Proficiency 
Strands, and working from the concrete through the representational to the abstract. 

Data collection 
The participants completed pre- and post-program questionnaires about their 
confidence and beliefs about Algebra. The teachers’ confidence questionnaire was 
based on five point Likert-type scale questionnaires designed by Hackling and Prain 
(2005) and Riggs and Enoch (1990). The respondents were asked to indicate their 
confidence concerning nine statements regarding the teaching of Algebra. The teachers’ 
beliefs questionnaire was adapted from a five point Likert-type questionnaire 
constructed by White, Way, Perry and Southwell (2006). The teachers were asked to 
indicate their beliefs about ten statements regarding their effectiveness as teachers of 
Algebra. The statements were concerned with constructivist beliefs about mathematics 
and beliefs about the meaningfulness of mathematics and, in particular, Algebra. 
 All participants in the PL program were invited to volunteer to be interviewed 
approximately four months after the conclusion of the program. The three case studies 
described below self selected for the semi-structured interviews, which were recorded 
and transcribed by the researchers. 
 Alice is a junior primary teacher who teaches a large class of Year Two students, 
without the support of an education assistant. She came into the PL program with very 
little confidence in her ability to incorporate algebraic reasoning in her mathematics 
program. As a participant in the program, Alice was enthusiastic, keen to trial the new 
ideas in her classroom and very willing to share her classroom experiences with all of 
the other participants in the group. 
 Beth works in a primary setting as a numeracy support teacher, predominantly 
supporting students in Years Four to Six. Initially her role involved withdrawing 
children to work on modified programs and recently it has been expanded to include 
supporting small groups of students within their lessons. This year Beth has begun 
mentoring other teachers by modelling mathematics lessons and demonstrating how 
she would teach lessons in a concrete manner and then develop the ‘big ideas’ and 
concepts within the lesson. Beth engaged with the PL program, enjoyed the readings 
provided as a research basis, and demonstrated a willingness to trial new ideas in her 
school and shared the results with other participants. 
 Claire is a secondary teacher of mathematics who does most of her teaching in the 
senior secondary WACE Stage 3 courses. She also has a middle school class of Year 
Nine students. Claire’s contributions were more considered than the other two 
teachers, although it was obvious from her comments that she had trialled with her 
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Year 9 students many of the ideas presented. She tended to share her experiences with 
small groups of participants rather than the group as a whole, although she occasionally 
relayed a story to all about a particularly successful lesson or experience. 

Results and discussion 
The aim of this project was to investigate whether PL could improve teachers’ 
confidence, attitudes and beliefs for the ACM sub-strand of Algebra. Specifically, PL 
designed around subject matter knowledge and pedagogical knowledge was 
investigated. The significance of this small study lay in the increased magnification of 
the topic of algebra in the primary school classroom within the ACM which has 
prompted some teachers to re-evaluate their capacity to successfully teach this 
important sub-strand. The small sample size meant that the aim of this study was to 
raise the issues as possibilities for further research rather than to provide any definitive 
answers. 
 In this section an attempt has been made to synthesise the responses provided by 
three of the participants in the PL program to questions asked in the pre- and post 
questionnaires and in a semi-structured interview. The questions posed were to gain 
further insight into whether the aims of the PL were achieved.  
 All three respondents indicated that they felt that the mixture of well-considered and 
well-delivered subject content, and sound pedagogical practices to deliver that content, 
contributed greatly to their increased levels of confidence by the end of the PL 
experience. This may be a recognition of the value of PCK (Shulman, 1986) in the craft 
of teaching. 
 Both Alice and Beth indicated that their confidence in developing the literacy skills 
needed for learning Algebra had improved and all three respondents believe their 
confidence in managing discussions and interpretations of algebra had increased 
during the PL program. In fact all three respondents alluded to confidence being gained 
through having the ‘correct’ language to articulate their general understandings of 
Algebra, which may be indicative of the power of having appropriate discourse.  
 All three respondents claimed that their content knowledge in algebra had improved 
since the start of the PL. Alice indicated that her perception of her own content 
knowledge jumped markedly when she realised what content was required to teach 
primary school algebra. She indicated that much she was exposed to in the PL affirmed 
the knowledge she already had regarding the content and the pedagogy but did 
strengthen both of these elements. Perhaps the biggest surprise was from Claire who 
was of all the respondents the person whose role was the most subject specific 
regarding mathematics, when she indicated that her content knowledge had improved. 
The growth perceived by Claire, was in combining quality pedagogy to her content 
knowledge (perhaps more indicative of improved pedagogical practices) and an 
increased understanding of what and how to teach students who were encountering 
difficulties. 
 Claire’s increased understanding of how to assist students who were encountering 
difficulties was facilitated by attendance at the PL with teachers of students from 
Foundation classes to Year 12. All three of the teachers indicated that having the range 
of year levels represented meant that they were able to discuss how the concepts, skills 
and knowledge required for Algebra were developed across the range of schooling. Alice 
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indicated that she gained greatly from knowing what happened with the foundations 
she built, Beth in seeing what teaching and learning had occurred before the students 
reached her, and Claire, the types of experiences that the students might have 
encountered prior to reaching secondary school. They all spoke of the richness that this 
heterogeneous group afforded in terms of ideas, strategies, pedagogy and even 
responsibility. 
 Pedagogical issues were very prominent in the conversations with all three 
respondents. Each indicated that their confidence in managing hands-on group 
activities had improved during the PL as had their confidence in engaging their 
students’ interest in Algebra. Alice and Claire indicated that, as a result of a change in 
their pedagogical practices, they purchased manipulative materials to support their 
teaching and learning of Algebra. Beth did not indicate the purchase of new materials 
but did signify that she had developed a greater understanding of what materials could 
be used to support the learning. The selection of suitable manipulative materials 
showed a developing understanding of the nexus between pedagogical practices and a 
deepening of content knowledge. 
 All three respondents indicated that at the conclusion of the PL that they believed 
they were more effective at finding better ways to teach algebra. They felt that they now 
had a much better idea of the steps that were necessary to teach algebraic concepts and 
to monitor algebraic investigations. Both Alice and Beth mentioned that they would be 
adopting a concrete-representational-abstract teaching and learning structure to their 
lessons as a result of this PL experience. All three teachers indicated an increased 
confidence in using a constructivist model to plan mathematics units of work during 
the course of the PL.  
 The ACM supports the learning of Algebra in providing content descriptions for all 
students from Foundation to Year 10. This is a mandated document for all Australian 
schools, although at the time of writing this article the transition to this document from 
the Western Australian Curriculum Framework (Curriculum Council, 1998) was not 
complete in all schools. What was not supported in any of the conversations was a deep 
understanding of this document. Alice’s lack of prior understanding with regards to the 
knowledge she already possessed in relation to primary school algebra; Beth’s 
perception that algebra was different from other mathematical strands and in 
particular not realising the direct links with the Number strand plus her inability to 
articulate a whole school scope and sequence; and Claire’s contention that she found 
the references to the ACM most illuminating; prompts the contention that the ACM is 
not as yet properly utilised or understood. 
 In articulating PCK in his seminal work, Shulman (1986) stated that there were 
three domains constituting PCK; content, pedagogy and context. Two of the 
respondents, Beth and Claire, talked about the importance of contextualising the 
algebra to facilitate learning. Claire in particular decided that this was to be a focus of 
her teaching.  

Conclusion 
What became apparent from a synthesis of both questionnaires and the semi-
structured interview was that the objectives of this PL were perceived to have been met 
by the case study respondents. These respondents reported that their content 
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knowledge and pedagogical knowledge both increased, as did their positive disposition 
towards Algebra, as illustrated through their perceptions of their beliefs and attitudes. 
These results suggest that a larger study could be initiated to see if PL designed around 
subject matter knowledge and pedagogical knowledge in Algebra could improve the 
content and pedagogical knowledge of teachers and therefore perhaps their pedagogical 
content knowledge. 
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The measurement of steepness draws content from both the number and algebra 
strand, and the measurement and geometry strand of The Australian Curriculum: 
Mathematics. When students are asked to use their own methods to measure the 
steepness of the ground, the task also incorporates understanding, reasoning, 
fluency, and problem solving. Activities involving the measurement of steepness 
provide valuable opportunities for students in middle school mathematics classes 
to learn about slope as a ratio. This concept is important for both further studies in 
algebra and understanding measurements used in the building and transport 
industries.  

Introduction 
Which of these paths is steeper? Or, which of these paths looks steeper?  

 

Figure 1. Two photographs of paths. 

 The mathematical knowledge that is needed to make accurate measurements of 
steepness is covered in high school mathematics classrooms but the question remains; 
is covering that knowledge in school enough to provide students with the means to 
perform that task once they leave school? How often, as teachers, do we assume that, if 
a student can carry out a mathematical procedure in the classroom they should also be 
able to carry out that procedure outside the classroom? There is a gap between the 
understanding that students need to complete tasks on paper and the understanding 
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they need to solve problems in the real world, outside the classroom. The need to 
address this gap has led to the inclusion of the proficiency strands in the Australian 
Curriculum: Mathematics. This presentation describes findings from research that has 
focussed on the measurement of steepness and how it can be used in a learning 
sequence to help students consolidate their understanding of the key concepts, and 
their proficiency in working with this measurement. 
 The Australian Curriculum: Mathematics is structured to develop the links between 
interrelated and interdependent concepts and systems. As children progress through 
the years of schooling, they are expected to build on their prior understanding, develop 
flexible understanding of concepts, and be able to apply those concepts “beyond the 
mathematics classroom” (ACARA, 2013, p. 1). Research into the measurement of 
steepness (Stump 2001, Lobato & Thanheiser, 2002) shows that it requires not only 
understanding of a number of concepts, but also the ability to select and apply them 
appropriately. This understanding is described here, along with findings from a recent 
study by the author in which pre-service teachers were given the task of measuring the 
steepness of a number of paths, including the one in Figure 1 (yes, they are both 
pictures of the same path). These findings have implications for teachers and their 
provision of learning activities in mathematics classrooms. 

Measurement  
High school students are expected to understand how to perform common 
measurements accurately. According to the Australian Curriculum: Mathematics, by 
the time they reach Year 7, students are expected to solve authentic problems involving 
measurement, use formal metric units for length, mass, and capacity, and understand 
the relationship between volume and capacity (ACARA, 2013). Alongside the specific 
aspects of each method of measurement, students are expected to develop 
understanding of the general concepts of measurement that apply to all methods.  
 The learning of measurement concepts has been described by Wilson and Rowland 
(1993) as occurring in five stages that begin with isolating the attribute, or 
understanding what is to be measured. Stage 2 involves the ability to make 
comparisons between different instances of the attribute. Comparisons are judgements 
made without units or formal methods but they still require the application of 
mathematical understanding in order to be accurate and appropriate. Direct 
comparisons, such as comparing peoples’ height by standing back to back, are more 
easily made than comparisons that can’t be made directly; is my son taller than I was at 
his age? Usually, indirect comparison requires the introduction of a unit, but units can 
be informal or formal. Stage 3 is the use of informal units (the classroom is six paces 
wide), and in stage 4, students use formal units correctly. Stage 5 involves the use of 
formulae to aid measurement. Wilson and Rowland note that an emphasis on formal 
units and formulae that comes before the earlier concepts have been consolidated, may 
result in a lack of understanding of the attribute and an over dependence on procedures 
for solving problems. 

Steepness 
Steepness can be thought of as a measurement of the ‘slantiness’ of a line. That line 
may be a two-dimensional representation on paper or a computer screen, or it may 



DUNCAN 

MATHEMATICS: LAUNCHING FUTURES 
80 

exist between two points in three-dimensional space, such as a ramp, a roof, or a hill. In 
the study referred to here, steepness was explained to participants as “the extent to 
which the ground varies from being flat.” This description implies a relationship to the 
horizontal, but this relationship can be perceived, and represented, in different ways 
(Figure 2). Two formal methods for measuring steepness are introduced to school 
students, the angle method and the ratio method.  
 

 

Figure 2. Two methods for measuring steepness. 

Measurement with angles begins in Year 2 and it has been observed that most students 
by the age of 9 years are able to conceptualise slope as an angle (Mitchelmore and 
White, 2000). Angle measures the amount of turn between two lines. When reduced to 
a 2-D representation, the steepness of a hill can be perceived as the amount of turn 
between the surface of the ground and the horizontal. Angle can be measured using a 
number of units but the most common method used throughout primary and high 
school mathematics is degrees. Initially, children are taught to recognise angle as a 
fraction of a turn and then to label a quarter turn as a right angle. By Year 4, students 
are comparing angles with right angles and, in the following year, using the formal 
method to measure angles in degrees and construct them with a protractor (ACARA, 
2013). 
 The measurement of steepness as a ratio is more complex than the angle method but 
it is also more widely used in contexts outside the high school mathematics classroom. 
The ratio method involves the perception of steepness as a change in height per unit of 
horizontal distance and is commonly expressed as “rise over run.” Ratio, as an example 
of proportional reasoning, requires multiplicative thinking (Siemon, 2006) and 
becomes a feature of the curriculum in Year 7. Steepness is synonymous with slope or 
gradient of a line, a foundational concept in algebra that is first mentioned in Year 9. 
Steepness as a ratio is also the method used most commonly in the building and 
transport industries (see Figure 3). The ability to perceive steepness as a ratio, 
therefore, is not only of benefit to students when they meet the concept of slope in 
algebra but also if they enter the building or transport industries after leaving school 
and use the measurement of steepness as a ratio to make judgements in their work.  
The unit notations that are used with ratios are diverse and problematic for middle 
school students. In fact, the concept of ratio as a measure is considered to be a special 
case that warrants explicit attention in the classroom (Simon & Blume, 1994). A ratio 
describes the relationship between two values with the same units. Steepness is the 
relationship between height and horizontal distance, which are both lengths. In this 
case, the notation does not require a unit to be stated. The relationship between rise 
and run is a proportion that is constant, no matter what unit is used to measure each 
length, as long as the same unit is used. As a proportion, ratio can be written as a 
fraction, a decimal, or a percentage. Other notations are also common, such as a colon, 

horizontal distance 

Steepness as an angle represents the extent the surface of the 
ground varies in direction from the horizontal. 

Steepness as a ratio represents the change in height  
that occurs per unit of horizontal distance. 

height angle 
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and the words to, in, per, and for every. Notations that can be expressed in a number of 
different ways can be confusing for students and adults alike. 

 

Figure 3. The ratio method is used in the transport industry. 

Mathematisation of steepness 
The term ‘mathematisation’ or mathematical modelling (Verschaffel, 2002), is used 
here to describe the process by which a person selects and applies mathematical 
concepts and procedures appropriately to solve a problem. The concepts and 
procedures outlined above represent some of the understanding that needs to be drawn 
on when students mathematise steepness. It requires the appropriate assessment of the 
problem to determine what mathematical concepts and procedures should be used, and 
how they should be used. This process is not required of students in mathematics 
classrooms who are told what procedure to use to solve a number of similar problems. 
In this scenario, learning involves the familiarisation of these procedures but this is 
widely recognised as being inadequate as the connections between related concepts are 
not made explicit (McIntosh 2002). The Australian Curriculum: Mathematics 
encompasses mathematisation in the proficiency strands. The emphasis is on students 
making connections between concepts, choosing appropriate procedures, and 
transferring what they know to unfamiliar situations (ACARA, 2013).  
 The inclusion of mathematisation into school curricula is not a new idea. The 
National Council of Teachers of Mathematics produced a series of reform documents 
beginning in 1985 that emphasised that students should not only “know” mathematics 
but should also be able to “do” mathematics. Simon and Blume (1994) studied pre-
service teachers’ attempts to mathematise steepness and identified a number of 
obstacles to the process. In a teaching experiment designed to foster views of learning 
and teaching in mathematics that were consistent with the recent reforms, learning 
activities were designed around a social constructivist model. Pre-service teachers were 
given the problem of devising a system for quantifying the steepness of a series of 
artificial ski-slopes, and required to solve this problem through group discussion. They 
were told that each slope had a known height, length of base, and width of base, and 
asked to explain how they would determine the relative steepness using this 
information. The mathematisation that was required involved the selection of the 
appropriate quantities (height and length of base) and to combine these quantities in 
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an appropriate ratio (rise over run). Simon and Blume concluded that an 
understanding of ratio-as-measure (such as steepness) involves both an understanding 
of proportional reasoning and an understanding of mathematisation. 

The research study 
A study by the author examined pre-service teachers’ attempts to compare and quantify 
the steepness of four sloping paths. Their capacity to accurately measure the steepness 
of these paths was assessed against the stages of learning measurement described by 
Wilson and Rowland (1993). The activity took place in a convenient outside location. 
Participants were each given a clipboard with the response sheet attached and a pen. 
They did not have access to any measuring equipment. Participants were first asked to 
quantify the steepness of four slopes represented as two-dimensional diagrams on 
paper (see Figure 4). They were told to choose any method they felt comfortable using, 
formal or informal. Next they were asked to walk around a circuit of paths and, at four 
locations (including the path in Figure 1), to assess and represent the steepness. The 
first representation they were to provide was a drawn line against a horizontal 
reference; the second was a number. A final question tested participants’ ability to 
simply compare steepness by asking them to order the paths from flattest to steepest. 
The slopes of the paths differed by approximately 5°. 
 

 
 

 
 

 
 

Figure 4. Participants were asked to quantify the representations  
of slopes using a method of their own choosing. 

A striking difference was observed between participants’ ability to accurately compare 
the steepness of the four paths and their ability to accurately represent the steepness as 
a diagram or as a number. All participants were able to make more than half the 
comparisons accurately, and most participants (84%) were able to successfully order all 
four paths according to steepness. From this result, it can be concluded that all 
participants understood what was meant by “steepness” and that most were able to 
perceive differences of steepness of 5°. In comparison, only 12% of participants were 
able to represent and quantify steepness of each path to within 5°. The understanding 
that exists between a person’s capacity to judge a difference and their capacity to 
quantify that difference is the aim of learning in measurement. 
The series of tasks described above required progressively more mathematisation, from 
the quantification of a diagram, to the drawn line representation, and then, the 
quantification of the actual paths. It was observed that participants’ error increased 
with this increase in mathematisation demands. Figure 5 shows the results from the 
survey illustrating the relationship between mathematisation demands and error. Each 
diagram shows the steepness to be measured and the participants’ attempts to 
represent and quantify that steepness.  
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Figure 5. Results from the survey activity. The shaded area represents the steepness to be 
measured, each line represents a participants’ attempt to represent it accurately. 

The aspects of mathematisation required to complete each task are summarised in 
Table 1. For the task of measuring steepness accurately, each of these aspects need to be 
identified and successfully applied. The research concluded that the errors made by 
participants in these tasks result from the lack of understanding of one or more of the 
appropriate concepts. 

Table 1. The aspects of mathematisation required to measure steepness accurately 

Task Appropriate concepts 

Quantification of a 
diagram 

selection of appropriate method (angle or ratio) 
estimation of size of angle or, 
estimation of quantities in ratio and, 
construction of a ratio 

Representation of the 
steepness of a path as a 
drawn line 

imagination of horizontal reference 
selection of an appropriate point of view from which to judge 
steepness  
creation of an accurate, two-dimensional representation of space 

Quantification of an actual 
path  

as in “quantification of a diagram” but applied to either the drawn 
line representation or the actual path 

Quantification of a 
diagram 

Drawn line representation 

Quantification of an actual 
path 



DUNCAN 

MATHEMATICS: LAUNCHING FUTURES 
84 

Implications for teachers 
Teachers need to deal with mathematisation, or the proficiency strands, explicitly in the 
classroom. Designing learning activities that require students to make decisions, 
provides them with an illustration of the need to make decisions as well as the context 
in which they can explore and test their own decision making skills. The activity 
described here is a simple one that can be conducted in most school environments. To 
follow this activity with an exploration of the results gained and a discussion of the 
sources of error can provide rich learning opportunities for students. To then follow 
this discussion with a plan for accurately measuring steepness, designed and tested by 
students, can help consolidate these understandings. These activities also provide 
opportunities for assessment from both the teacher’s and the student’s point of view.  
 The task of measuring steepness involves the application of a number of 
mathematical concepts. Each of these concepts can be explored and tested via this 
activity. In doing so, the students’ understanding of each concept can be developed 
towards the broad and flexible understanding that is described in the Australian 
Curriculum: Mathematics. Through experiencing these concepts in a range of contexts, 
students are more likely to develop conceptual understanding of measurement, 
proportional reasoning, slope as a ratio and mathematisation. 
As teachers, we cannot assume that students’ success in paper-based tasks is indicative 
of their potential to succeed in problem solving outside the classroom, particularly 
when the tasks used to assess students’ understanding do not require them to select the 
concepts and procedures that should be used. Practice in mathematisation enhances 
conceptual understanding and students’ proficiency in applying mathematical concepts 
outside the classroom. 
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Many fraction activities rely on the use of area models for developing partitioning 
skills. These models, however, are limited in their ability to assist students to 
visualise a fraction of an object when the whole changes. This article describes a 
fraction modelling activity that requires the transfer of water from one container to 
another. The activity provides the opportunity for students to explore the part–
whole relationship when the whole changes and respond to and reason about the 
question: When does ½ = ⅓? 
 

Although the use of concrete materials for the teaching and learning of fractions is 
strongly advocated, many teachers in the middle years do not use concrete materials for 
fraction development (Van de Walle, Karp & Bay-Williams, 2010). The emphasis is 
often placed on determining the fraction of shaded areas of geometric shapes and 
multiple procedural computations of fractions of groups. Little attention is given to the 
conceptual development of fraction understanding (Mills, 2011).  
 Hands-on activities that are developed for students in the middle years often use the 
context of pizza, cookies, and food as real-life contexts and models (e.g., Bush, Karp, 
Popelka & Miller Bennet, 2012; Cengiz & Rathouz, 2011; Wilson, Edgington, Nguyen, 
Pescocolido & Confrey, 2011). Such activities put an emphasis of the use of the circle 
area model for the development of understanding of part–whole relationships, but do 
not address other representations such as fractions as a measure, ratio, and operator. 
Dominating students’ experiences with the circle area model limits students’ ability to 
transfer their knowledge of fractions to different models and contexts (Clements & 
McMillen, 1996). It is, therefore, important to use a variety of fraction models in order 
to support students to make the connections among the different fraction 
representations.  

Mathematical models 
The choice of what model to use to foster particular mathematical understanding needs 
to be based on the model’s ability to provide links between the features of the model 
and the target mathematics knowledge. Stacey and colleagues (2001) describe this as 
epistemic fidelity. Another factor that influences the usability of a particular model is 
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the process of engagement students undertake with the model and is dependent on the 
specific socio-cultural practices of the students and established classroom practices. A 
third factor raised by Stacey et al. is accessibility. Accessibility is optimal when 
students “see through it [the model] to the underlying principles and relations, without 
being confused by features of the model itself” (Stacey, Helme, Archer & Condon, 2001, 
p. 200).  
 The three factors described by Stacey et al. (2001)—epistemic fidelity, process of 
engagement, and accessibility—determine the effectiveness of concrete materials used 
as models. Collectively the factors contribute to the transparency of the model. 
Transparency is achieved when the inherent features of the model, and the way in 
which the model can be manipulated within particular classroom practices, supports 
effectively students’ development of mathematical knowledge (Meira, 1998). Meira also 
stresses that concrete materials provide a focus for discussing mathematical ideas. In 
some cases the concrete materials provide vital links between the mathematics and its 
application in real-life contexts—an element absent in many mathematical activities. 

Fraction models 
Typically, three fraction models are used in the middle years of schooling—area, length, 
and set models. Area models help students visualise parts of the whole, length or linear 
models show that there are always other fractions found between two fractions, and set 
models show that the whole is a set of objects and subsets of the whole make up 
fractional parts. The three different models impart different meaning and provide 
different opportunities to learn. Activities designed with these models for students in 
the middle years mirror the way in which they are used in the primary classroom. 
Therefore, they have nothing more to offer the students as they progress into secondary 
education. The repeated use of the same models and activities in the middle years, 
particularly “determine the fraction of the shaded area,” does not acknowledge the need 
to extend students’ problem solving and reasoning skills as advocated by the Australian 
Curriculum: Mathematics (Australian Curriculum, Assessment and Reporting 
Authority [ACARA], 2013), nor does it acknowledge the need to provide older students 
with meaningful activities that make connections to other mathematical ideas and 
concepts.  

Alternative fraction model 
In this section a fraction activity is described that introduces a different fraction 
model—a liquid volume model. The activity uses water in containers to explore what 
happens when a quantity of water is transferred into a different container, thereby, 
giving students the opportunity to explore what happens when the whole changes in a 
part–whole relationship. A collection of different sized containers is required for the 
activity. Odd shaped containers make it more interesting and more challenging when 
visualising the fraction filled. Using a smaller container for the second part of the 
activity than in the first part will result in fractions greater than 1. Examples of the type 
of containers that could be used are shown in Figure 1 and the activity is described in 
Figure 2.  
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Figure 1. Collection of containers. 

 

When is ½ = ⅓? 
Set the scene 
You have a container with water in it to water some plants. The container is not full. Your 
container starts to leak very slowly so you have to transfer the water into another 
container. First, mark the level of the water in the container. Now transfer the water into 
a different sized container. 
Estimate 
Estimate the fraction of the container taken up by the water for each container.  
Measure 
Measure the volume of the water. 

Record and comment 
 

 
Container 1 Container 2 

Volume of container 
  

Estimation of fraction of 
container filled with water 

  

Measure of water 
  

Calculated fraction of water in 
the containers 

  

Express the calculated 
fraction as a decimal  

  

Percentage of container filled 
with water 

  

How close was your estimate to the actual fraction for each container? 

Which container was easiest to estimate the fraction filled? 

Comment on the question: When is ½ = ⅓? 

 
 

Figure 2. Initial investigation. 
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 After students have conducted the initial investigation they can use the fractional 
quantities and the measurements made to answer questions that will assist them to 
develop fluency in fraction calculations. For example: 

• What volume of water is required in the second container to have an equivalent 
fraction to that in the first container? 

• How much water does each plant get if you give six plants an equal share of the 
water in your container? 

• What fraction of the container would each of the six plants get? 
• Before watering the plants you drank one fifth of the water. You then used two 

thirds of the water left to water three plants. What fraction of the container was 
used to water the plants? 

 Classroom discussions that occur during and after the activity can include the 
relationship between fractions, decimals, and percentages as well as responses to the 
overarching activity question. There is also the opportunity to discuss the need to 
convert the units of measure used. Calculations involving a 2 litre container may 
involve converting the containers volume of 2 litres to 200o millilitres. 
 Utilisation of this activity within a sequence of learning activities designed to 
enhance students understanding of fraction concepts will provide the opportunity to 
address multiple mathematics learning outcomes in Year 7 of the mathematics 
curriculum.  

• Solve problems involving addition and subtraction of fractions, including those 
with unrelated denominators (ACMNA153) 

• Express one quantity as a fraction of another, with and without the use of digital 
technologies (ACMNA155) 

• Connect fractions, decimals and percentages and carry out simple conversions 
(ACMNA157) 

• Find percentages of quantities and express one quantity as a percentage of 
another, with and without digital technologies. (ACMNA158) (ACARA, 2013). 

Conclusion 
This activity takes advantage of the inherent nature of water to develop students 
understanding of fractions. Because water is a liquid, it can take the shape of the 
container in which it is stored without changing its volume. Therefore transferring 
water from one container to another allows immediate visualisation of the original 
quantity as a fraction within the new container. This property increases the epistemic 
fidelity of the fraction model underpinning the activity. The use of containers used 
every day by students and the familiarity students have with standard-sized drink 
containers increases the accessibility of the activity. There is, however, the need to 
explore the use of this activity further. As Meira (1998) suggests, students from 
different socio-cultural backgrounds may engage with this activity in unexpected ways 
and it is important to determine if the liquid volume model provides the transparency 
needed to make it an effective learning model for fraction development. 



FITZALLEN 

MATHEMATICS: LAUNCHING FUTURES 
89 

References 
Australian Curriculum, Assessment and Reporting Authority. (2013). The Australian curriculum: 

Mathematics. Version 4.2. Retrieved from 
http://www.australiancurriculum.edu.au/Mathematics/Rationale 

Bush, S. B., Karp, K. S., Popelka, P. & Miller Bennett, V. (2012). What’s on your plate? Thinking 
proportionally. Mathematics Teaching in the Middle School, 18(2), 100–109. 

Cengiz, N. & Rathouz, M. (2011). Take a bite out of fraction division. Mathematics Teaching in the Middle 
School, 17(3), 146–153. 

Clements D. H. & McMillen, S. (1996). Rethinking concrete manipulatives. Teaching Children 
Mathematics, 2(5), 270–279. 

Meira, L. (1998). Making sense of instructional devices: The emergence of transparency in mathematical 
activity. Journal for Research in Mathematics Education, 29(2), 121–142. 

Mills, J. (2011). Body fractions: A physical approach to fraction learning. Australian Primary Mathematics 
Classroom, 16(2), 17–22.  

Stacey, K., Helme, S., Archer, S. & Condon, C. (2001). The effect of epistemic fidelity and accessibility on 
teaching with physical materials: A comparison of two models for teaching decimal numeration. 
Educational Studies in Mathematics, 47, 199–221. 

Van de Walle, J. A., Karp, K. S. & Bay-Williams, J. M. (2010). Elementary and middle school 
mathematics: Teaching developmentally. Boston, MA: Pearson Education, Inc.  

Wilson, P.H., Edgington, C., Nguyen, K. H., Pescocolido, R. C. & Confrey, J. (2011). Fractions: How to fair 
share. Mathematics Teaching in the Middle School, 17(4), 230–236. 

 
 



 

MATHEMATICS: LAUNCHING FUTURES • © AAMT 2013 
90 

IMPLEMENTING JAPANESE LESSON STUDY:  
AN EXAMPLE OF  

TEACHER–RESEARCHER COLLABORATION 

SUSIE GROVES 

Deakin University 

susie.groves@deakin.edu.au 

BRIAN DOIG 

Deakin University 

badoig@deakin.edu.au 

WANTY WIDJAJA 

Deakin University 

w.widjaja@deakin.edu.au 

DAVID GARNER 

Creekside K–9 College 

garner.david.s@edumail.vic.gov.au 

KATHRYN PALMER 

Melton Network 

palmer.kathryn.k@edumail.vic.gov.au 

 
There is growing worldwide interest in Japanese Lesson Study as a model for 
professional learning, with large-scale adaptations of lesson study taking place in 
many countries. This paper describes how teachers and researchers collaborated in 
a lesson study project4 carried out in three Victorian schools. It describes Japanese 
Lesson Study and the typical structured problem solving research lesson that forms 
the basis for lesson study; and discusses how the collaborative planning process 
and the resulting research lessons, together with the post-lesson discussions, 
provided teachers and researchers with the opportunity to collaborate in the 
research process. 

Japanese Lesson Study 
Japanese Lesson Study is a professional learning activity with origins that can be traced 
back for almost a century. Unlike many Western initiatives, richly funded and 
mandated, lesson study in Japan is neither funded nor mandatory. Essentially school-
based and organized by teachers themselves, it pervades primary school education—
and to a lesser extent secondary school education—across the country, with teachers 
researching their own practice in school-based communities of inquiry.  
 Lesson study first came to worldwide attention as a vehicle for professional learning 
through Yoshida’s (1999) doctoral dissertation and Stigler and Hiebert’s (1999) 
accounts of Japanese structured problem solving lessons based on the Third 
International Mathematics and Science Study (TIMSS) video study. Since then, there 
has been phenomenal growth of lesson study as a vehicle for professional learning in 
countries such as the USA, UK, Malaysia, Indonesia and Australia. 
 Japanese Lesson Study has four components:  

• formulation of over-arching school goals related to students’ learning and long-
term development;  

• group planning of a research lesson addressing these goals;  

                                                

4  The Implementing structured problem solving mathematics lessons through Lesson Study project was 
funded by the Centre for Research in Educational Futures and Innovation, Deakin University. The 
project team consisted of Susie Groves, Brian Doig, Colleen Vale and Wanty Widjaja. 
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• one team member teaching the research lesson while the planning group, and 
others, observe in order to gather evidence of student learning; and  

• the post-lesson discussion where the planning group and other observers (usually 
including an “outside expert”) discuss and reflect on the evidence gathered during 
the lesson, using it to improve the lesson, the unit, and instruction more generally 
(Perry & Lewis, 2008, p. 366).  

 In Japan, the research lesson in mathematics is based on “structured problem 
solving”, a major instructional approach designed to create interest in mathematics and 
stimulate creative mathematical activity (Takahashi, 2006). Typically such lessons have 
four stages: posing the problem; students solving problems individually, in pairs or 
small groups; whole-class discussion; and summing up (Shimizu, 1999). These lessons 
have a single focus and address a single problem designed to “achieve a single objective 
in a topic” (Takahashi, 2006, p. 4).  
 Critical in the process of planning a research lesson is the selection of the problem or 
task for the problem solving activity through kyozaikenkyu, which is an intensive and 
complex investigation of a large range of instructional materials, including textbooks, 
curriculum materials, lesson plans and reports from other lesson studies, coupled with 
a study of students’ prior understandings (Watanabe, Takahashi & Yoshida, 2008). 
While teachers cannot engage every day in such deep kyozaikenkyu, conducting it for 
the purpose of a research lesson leads to a deeper understanding of the curriculum and 
the mathematical content and goals underpinning it, as well as the importance of 
matching problems to both the mathematical goals of the lesson and students’ 
knowledge (see also Doig, Groves & Fujii, 2011).  
 Public observation and debriefing of research lessons is a key feature of Japanese 
Lesson Study. Typically a research lesson will be observed by all members of the lesson 
planning team, the school principal, the other teachers at the school (or the other 
teachers in the same subject area at secondary schools), and an “outside expert” who 
acts as the final commentator at the post-lesson discussion. Depending on the scale of 
the research lesson, there may be many additional outside observers—50 to 100 
observers would not be unusual. Observers focus on student learning and are expected 
to base their comments in the post-lesson discussion on evidence they have collected 
during the lesson. The purpose is to promote thoughtful, data-focussed discussion of 
the lesson. 
 Teachers act as researchers in all phases of the Japanese Lesson Study process, 
researching the curriculum, teaching resources, known student misconceptions, and 
formulating their own research questions to be addressed through the research lesson 
and subsequent post-lesson discussion. 

Our lesson study project 

The Implementing structured problem solving mathematics lessons through Lesson 
Study project worked with two Year 3 or 4 teachers from each of three schools from a 
Melbourne school network to explore ways in which key elements of Japanese Lesson 
Study could be embedded into Australian mathematics teaching and professional 
learning. Teachers were supported not only by members of the Deakin research team, 
but also by a key leading teacher at each school (e.g., a curriculum specialist or 
numeracy coach) as well as the network numeracy coach—a total of ten participants.  
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 Participants took part in an initial whole-day professional learning session on lesson 
study in June, and completed one lesson study cycle during each of Terms 3 and 4 of 
2012. Each lesson study cycle involved two cross-school teams of three teachers and 
two leading teachers or coaches planning a research lesson on the same topic during 
four two-hour planning sessions. Each team was supported by two of the university 
researchers. One member of each team taught the research lesson in front of observers, 
with both teams participating in the post-lesson discussions. Key staff at each school, 
together with all interested teachers who could be released from their classes at the 
time of the research lessons, as well as other professionals such as numeracy coaches 
and leadership teams from other network schools, and mathematics educators, were 
invited to observe the lessons and take part in the post-lesson discussions. 
Approximately 30 people observed the fourth research lesson in December 2012. Due 
to the perceived success of the project, the project has continued into the first half of 
2013, with two days of teacher release for each participating teacher being funded by 
the Melton Network. Two research lessons are now being planned for the second week 
of Term 2.  
 In this paper, members of the Deakin University research team discuss how the 
collaborative planning process and the resulting research lessons, together with the 
post-lesson discussions, provided teachers and Deakin researchers with the 
opportunity to collaborate in the research process, while one of the school numeracy 
coaches and the network numeracy coach provide their perspectives on the project. 

The collaborative planning process  
Detailed and careful planning is central to the Japanese Lesson Study process. Planning 
for lesson study in a Japanese school involves setting overarching goals, as well as goals 
for the unit of work in which the research lesson is embedded, and goals for the 
research lesson itself. Teachers need to identify key mathematical ideas to be explored 
in the lesson and anticipate students’ mathematical solutions. In keeping with the spirit 
of Japanese Lesson Study, which sets out to engage teachers as “investigators of their 
own classroom practices” and “researchers of teaching and learning in the classroom” 
(Takahashi & Yoshida, 2004, p. 438), teachers and coaches took full responsibility for 
the planning of the research lessons. The Deakin research team facilitated the planning 
process by sourcing potential mathematical tasks to be explored, modelling a problem 
solving lesson using a problem similar to the one to be used in the first research lesson, 
and providing resources such as articles on lesson study and sample lesson plans.  
 During the first planning meeting in each cycle, teachers and numeracy coaches in 
the project engaged in solving the mathematical problem proposed for the research 
lesson and participated in a discussion of their solutions. Having first-hand experience 
in solving the mathematical problem and discussing the attributes of various solutions 
was instrumental in helping teachers anticipate the learning potential for students and 
possible misconceptions students might have when working on the problem. 
Furthermore, engaging in solving the mathematical problems provided teachers with 
opportunities to deepen their mathematical content knowledge.  
 Anticipating students’ solutions is a key element of the lesson planning process in 
Japanese Lesson Study (Shimizu, 2009). It gives teachers a clear idea of what to look 
for when they observe students’ work, thus enabling them to orchestrate a productive 
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whole-class discussion that carefully sequences students’ solutions. The main teaching 
and learning takes place during this whole-class discussion, which is designed to help 
students learn something “new” and advance their mathematical thinking. (Shimizu, 
2009; Takahashi, 2006; Watanabe, Takahashi & Yoshida, 2008).  
 Anticipating students’ mathematical solutions was a new element in the planning 
process for all teachers and coaches. Similarly, orchestrating an extended whole-class 
discussion was not a common practice in their mathematics lessons. Initially teachers 
expressed concern about allocating 20 minutes for a whole-class discussion and 
predicted that this would be challenging for their students. In order to allow teachers to 
become more familiar with such a lesson structure and to build their confidence in 
implementing such lessons, the research team encouraged teachers to work closely with 
their school numeracy coach in trialling a similar problem solving task in their 
classrooms. Teachers in both planning teams agreed to trial another problem with their 
class and record students’ responses. As a result, teachers became more comfortable 
with conducting extended whole-class discussions, with one teacher commenting that 
she had been “quite wrong” when she had previously predicted that her class would not 
be able to come up with many different solutions or be able to spend extended time 
sharing these. This was a major breakthrough for this teacher. Other teachers came to 
similar conclusions after trialling the research lessons in different classes prior to the 
research lesson day. Sharing the insights gained from trialling these problem solving 
lessons in the planning meetings was instrumental in advancing the planning process. 
Through this trialling process, teachers were encouraged to examine in detail various 
elements of the research lessons, such as the exact phrasing of the task, ways to elicit 
students’ mathematical thinking through questioning, and planning the sequence of 
students’ solutions to enable a progression of ideas.  
 At the beginning, there might have been an expectation that the researchers would 
lead the way in planning the research lesson. However, members of the planning teams 
shared responsibilities to identify links between lesson goals and curriculum 
documents. Collective effort by every member was evident through the sharing of 
resources. The numeracy coaches played a salient role in supporting teachers to 
conduct the trial lessons by arranging a release time for teachers to observe each other’s 
trial lessons, analysing students’ work and helping teachers to plan questions to elicit 
students’ thinking. The fact that members of the research team stepped back and let the 
teachers and coaches take control of the planning process was initially challenging for 
some teachers. However this thinking had shifted by the end, after teachers had 
observed the benefits of developing their own clear ideas about different elements of 
the lesson through the process of articulating their thoughts and ideas, guided by 
questions from members of the research team. There was a strong sense of mutual trust 
among members of the planning teams, driven by the intention to work on common 
goals to generate knowledge by examining classroom practice with questioning 
attitudes, an indication that the planning teams were working as communities of 
inquiry (Groves, Doig & Splitter, 2000; Jaworski, 2008). 
 In-depth planning of a research lesson requires a large time commitment. While 
teachers and coaches saw the real benefits of in-depth planning in deepening teachers’ 
knowledge of mathematics and in the changes to their lessons, ways to address the 
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common concern about the amount of time and continued support from the school 
community required remain to be explored. 

Teachers as researchers  
On the surface, Japanese Lesson Study would not appear to be related to teachers 
acting as researchers. However, examining one’s practice is a core aim of the research 
lesson. The purpose of the research lesson in Japanese Lesson Study is not to provide 
“a demonstration that showcases a particular teacher or approach” (Watanabe, 2002, 
p. 37), but rather to provide a proving ground or test-bed for an experiment in teaching 
and learning. While this may seem a grandiose claim for a single lesson, albeit well-
designed and taught, Lewis and Tsuchida (1998) report that “Japanese teachers 
repeatedly pointed to the impact of ‘research lessons’ … as central to individual, 
schoolwide and even national improvement of teaching” (p. 12). 
 How does this work? In a Japanese Lesson Study cycle, teachers in the planning 
group choose goals and design a lesson to achieve these goals. The goals may be to 
improve student attitudes to mathematics, to develop new skills, or to try an alternative 
approach to a curriculum topic. In most cases, the goals include one that is directed 
towards developing student understanding. For example, in our project, the task in one 
research lesson was to find the number of dots in a 23 x 3 array, without counting the 
dots individually. One of the two planning teams listed the following as their two goals 
for their research lesson: “to encourage students to use more effective multiplicative 
thinking strategies (including the use of arrays and partitioning); and to ensure 
students’ mathematical explanations match their use of the diagram”.  
 These goals reflect the planning group’s own goals or research questions, one of 
which was “to build the content knowledge of teachers as well as their capacity to ask 
more precise questions about the student responses”. In their lesson plan, this group 
included a section on how these lesson goals related to their own lesson study goals, 
stating that: 

In this lesson we are looking at how the teacher poses the problem in order to elicit 
student thinking about multiplicative strategies. The teacher questioning and discussion 
should progress student thinking at their point of need and the collaborative planning for 
this lesson should result in improved teacher practice and student learning.  

Although the teachers’ research questions are phrased as goals, it is clear what the 
teachers planning the research lesson wish to investigate. 
 Once the planning group has agreed on the goals, the lesson plan starts to take 
shape. A critical feature of the planning is to anticipate likely student solutions. 
Without a tradition of such lessons to fall back on, teachers in the planning groups 
trialled the task in their own classrooms, in order to identify likely solution strategies. 
Researching likely solutions to a problem is a feature of planning for a research lesson, 
revealing to the inquiring teacher not only many aspects of how children interpret 
tasks, but also the range of strategies that students employ in solving the problem. In 
the problem involving finding the total number of dots in the 23 by 3 array, teachers’ 
research in their own classrooms found the following strategies used by the Year 3 and 
Year 4 students: counting all the dots; using repeated addition; skip counting by 3s; 
writing the number sentence 23 × 3 = 69; and using the vertical multiplication 

algorithm. While some teachers were surprised with the range of strategies found, 
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others were surprised at the achievement of some of their thought-to-be less capable 
students. As teachers gained more interesting insights into their students’ thinking, this 
also honed the questions to be used within the lesson itself, as teachers discovered the 
effect of using different wordings of the task on student responses. This emphasis on 
deciding on an exact wording to a task in order to stimulate desired responses from 
students took on a life of its own and became a major influence in creating later lessons. 
 Finally, the observers invited to the research lesson (a hundred extra eyes) were 
asked by the planning team to look for evidence that would support the achievement of 
their goals for the research lesson, thus helping the teachers gauge the effectiveness of 
their endeavour. For example, the planning team referred to earlier, stated:  

We would like the observers to focus on one or two students to collect data on the 
strategies used in the lesson. Specifically we would like to know if the strategy used by the 
students matches their recorded method using the diagram and if the student is chosen to 
share, how well does the student articulate the strategy used and recorded method?  

 Over the complete lesson study cycle, teachers were continually investigating “What 
would happen if we…?” and worked on answering their own questions. In a 
presentation at the 2012 Mathematics Association of Victoria annual conference, two 
points were highlighted that under-scored the heightened interest in researching 
practice by the lesson study project teachers, namely the benefits to teachers and 
students coming from: planning in teams with clear lesson goals; and trialling lessons 
before conducting them. 
 In this project, it was apparent to both the teachers and the university academics, 
that the teachers were researchers in the project just as much as were the academics. 

Creekside College: A need for lesson study 
As a numeracy coach in a school of over 1400 students, leading the development and 
evolution of a problem solving culture in mathematics looms as a challenging task. For 
teachers to teach through problem solving, rather than the more commonplace “teach a 
problem solving strategy a week” approach, it is vital to build a collaborative, learning 
community model for planning mathematics units and lessons. Teams of teachers need 
to work as professional learning communities, where their mathematical knowledge for 
teaching is developed collaboratively and in an ongoing way, enabling them to teach 
within a problem solving paradigm of mathematics teaching and learning. If building 
teachers’ mathematical knowledge for teaching is the priority, then Japanese Lesson 
Study offers a model within which this can take place. Lewis, Perry and Murata (2006) 
outline the conjecture that more than simply planning a lesson, Lesson Study 
strengthens three pathways to instructional improvement (see Table 1). 
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Table 1. Lesson study strengthens teachers’ mathematical knowledge for teaching  
(Lewis et al., 2006, p. 5) 

Teachers’ knowledge Teachers’ commitment 
and community 

Learning resources 

Knowledge of subject matter Motivation to improve 

Knowledge of instruction Connection to colleagues who 
can provide help 

Lesson plans that reveal and 
promote student thinking 

Capacity to observe students 

Connection of daily practice to 
long-term goals 

Sense of accountability to 
valued practice community 

Tools that support collegial 
learning during lesson study 

 
 Although the success of Japanese Lesson Study as a model for improving instruction 
and teacher content knowledge in Japan has been well-researched and documented, 
the ability of non-Japanese schools and systems to adopt it as successfully must be 
considered. Lewis, Perry, Hurd and O’Connell (2006) conducted research into the 
effectiveness of North American schools and districts in utilising and adapting a lesson 
study approach to improve teacher instruction and student achievement. They found a 
distinct improvement in student achievement data in mathematics with the inception 
of their lesson study approach. Teachers also commented on the enhanced 
collaboration and development of collective efficacy in the culture of the school. While 
the whole process is built strongly around the established lesson study processes of 
Japan, the schools in the United States were continuously mindful of making it work in 
the USA, not simply replicating the exact program as observed. This not only allowed 
the schools to develop a model that worked for them, but also allowed the schools, 
teachers and professionals involved to take ownership of the lesson study process. It is 
these two key pieces of research that have lead me to believe that incorporating aspects 
of lesson study, if not entire lesson study cycles, into the established planning and 
teaching practices of Creekside College teachers would be a key strategy in the 
improvement of mathematics teaching and learning at our school. The project with 
Deakin University therefore provided the perfect catalyst for change. 

A school-based coach’s experiences of the lesson study project 

The opportunity to take part in the lesson study project provided a rich experience with 
myriad benefits, challenges and future implications for both my coaching practice and 
the teaching and learning practice of the teachers involved in lesson study. Successes of 
the project included, but were not limited to: 

• collaborative planning within a team; 
• exploration of developmental continua throughout the planning meetings; 
• increased mathematical knowledge for teaching, reported by all teachers at the 

conclusion of each lesson study cycle; 
• the opportunity to work with ‘more experienced others’ throughout the planning 

process; 
• planning, teaching and reflecting on a problem solving approach to mathematics; 
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• modifications to the established lesson structure to incorporate more teaching 
taking place through reflection and sharing; 

• consideration and planning for anticipated student responses to the problem 
throughout the planning process; 

• building the confidence of the classroom teachers involved in the project; 
• careful, more deliberate task selection, design and modification to meet the 

learning goals of the lesson and unit; 
• the rigorous nature of the planning documentation; 
• the honest and open nature and culture of the post-lesson discussion, enabled by 

the thorough discussion of the lesson, lesson plan, teaching and learning; and 
• multiple cycles allowing all involved to hone skills and reflect on learning through 

the new implementation. 
 Future implications for mathematics teaching and learning at Creekside College as a 
result of the lesson study project included, but were not limited to: 

• extending share time to around fifteen to twenty minutes in most numeracy 
lessons; 

• student solutions being deliberately selected and ordered across a continuum of 
learning rather than just having a student read our their own work; 

• use of moderation of problem solving task as a pre-assessment for units; 
• running lesson study teams throughout the year; 
• eventually having each team of teachers running a lesson study cycle; 
• importance of teachers planning in a way that builds their knowledge of 

misconceptions and how they teach through these; and 
• in my role as coach, leading the development of teachers’ task design and 

questioning skills. 
 It is important to conclude with a reflection on why this project was so important 
and what it means for the future. I feel vindicated in my belief that if we can develop a 
planning model where teachers can build their knowledge for teaching, then we can 
improve teachers’ practice and, most importantly, improve student learning. The ability 
of this project to bring together mathematics researchers, numeracy leaders and 
classroom teachers was a vital component in “launching” lesson study. Merely reading 
about it and then trying to implement it within schools would not do the process 
justice. Having researchers who have been involved in lesson study—on multiple 
occasions, in multiple schools, across a number of years and countries—allowed us to 
run an authentic lesson study, the benefits of which are countless. A project, which 
allowed teachers to engage in their own research hand in hand with more experienced 
others, provided ongoing opportunities for self-reflection and the ability to engage in a 
genuine professional learning community. I see my role as one where I “teach a man to 
fish” rather than give him a fish. Without this view, I believe teachers will never gain 
the knowledge and confidence to teach high quality mathematics programs and engage 
learners as problem solvers. Leading and empowering others in collaborative learning 
communities is essential if long-term, sustainable change is going to occur. Lesson 
study provides one such paradigm, and this project has been the catalyst for 
establishing lesson study cultures in our Australian schools.  
 Perhaps the most significant ‘product’ of the lesson study project for Creekside 
College is the implementation of our first lesson study cycles within the school in 2013. 
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A group of six teachers from across different year levels will be engaging in a full lesson 
study cycle each term throughout the year. It is hoped that this will become part of the 
culture of not only mathematics teaching and learning practice, but also an in-built 
component to quality teaching and learning practice across all curriculum areas into 
the future. 

Lesson study in the Melton Network  
As a numeracy coach to over 20 schools across the Melton Network in the Western 
suburbs of Melbourne, I have been trying for many years to implement the concepts 
underpinning Japanese Lesson Study. Last year I got the opportunity to act as a project 
facilitator in an authentic lesson study project. This involved inviting three schools in 
my network to become involved in Deakin University’s project. Considerations included 
finding three schools in close proximity to each other to overcome travelling issues; 
teachers were able to move between schools during their lunch break. The first step was 
to convince the school-based numeracy coach and the leadership team at each school 
that this was a worthwhile project. As the facilitator of the school-based numeracy 
coaches’ professional learning in my network, I had previously discussed the merits of a 
lesson study approach to develop teacher content knowledge. So with Deakin 
University support of funding and personnel this was an easy task and all schools 
approached were extremely eager to be involved. All school numeracy coaches and 
leadership teams within the network were invited to attend each research lesson. While 
not all attended, those who did were excellent advocates for the process and soon there 
was a need to give all principals within the network some professional learning around 
the lesson study process. As a result the Melton Network of schools agreed to support 
the original schools in continuing a final lesson study for Term 1 in 2013 so that all six 
classroom teachers in the project could have the opportunity to conduct a research 
lesson. 
 As a result of the professional discussions and participation in the lesson study 
project, schools involved in the project have: 

• created greater levels of collegiality between teachers and schools involved in the 
project; 

• helped to build a common professional language and common understanding of 
high quality pedagogy; 

• provided opportunities for teachers to share high quality teaching practice, 
thereby providing a forum to share ideas, success and challenges; 

• had a reason to learn together as a result of participating in a practical project 
that will help improve student learning; 

• had to carefully prioritise the most important themes to tackle in the research 
lesson; 

• shared collective responsibility for producing more effective learning for all 
students; 

• used and built on what they know;  
• created and implemented plans for achieving their project aims—they think big, 

but start small and manageable;  
• identified the professional learning strategies that most help them learn; and 
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• combined outside-provided support (research findings, Network Numeracy 
Coach, external consultants—Deakin University) and work-embedded support 
(lesson observations, team-teaching, coaching). 

 While there have been numerous benefits from involvement in this project for both 
the network and the schools involved, the next challenge is to sustain this work. As my 
role as network coach is funded through National Partnerships funding, it is unlikely it 
will continue after this year. Many schools are placing their full time school based 
numeracy coaches back into a full time classroom role and therefore won’t have the 
time to support the intensive planning needed to develop research lessons. External 
funding from both Deakin University and, this year, from Melton Network has 
definitely been a huge reason for the success of this project. However, I am confident 
that all schools involved in the project will try to modify and implement many of the 
aspects of lesson study they have experienced through their involvement in this project. 

Conclusion 
In Japan, lesson study is the main form of systematic professional learning undertaken 
by teachers. Outside Japan, lesson study is sometimes understood superficially as an 
activity aimed at perfecting individual lessons. However, it should rather be seen as an 
activity that allows teachers to collaborate with one another to research their own 
practice. For example, Lewis and Tsuchida (1998) quote a teacher as saying: 

Research lessons help you see your teaching from various points of view… A lesson is like 
a swiftly flowing river; when you’re teaching you must make judgments instantly. When 
you do a research lesson, your colleagues write down your words and the students’ words. 
Your real profile as a teacher is revealed to you for the first time (p. 15). 

Lesson study in Japan usually involves the participation of outside experts—typically 
educational consultants, district personnel, or university academics. While these 
outside experts may only participate in the post-lesson discussions, their contributions 
help teachers reflect on their practice and often inject new knowledge about relevant 
research findings. Findings from our project suggest that lesson study in Australia can 
also provide the opportunity for genuine teacher–researcher collaboration. 
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The proportion of students studying advanced mathematics in Years 11 and 12 in 
Australian schools has been declining since the mid-1990s. As such, universities 
are accepting students into mathematics-based degrees with weaker mathematical 
backgrounds than previous generations. How do students perform in university 
mathematics subjects if they have only studied intermediate mathematics at 
school? This paper investigates student performance in university mathematics 
subjects at The University of Queensland, based on whether students studied 
intermediate mathematics only or both intermediate and advanced mathematics at 
school. 

Introduction 
There are substantial and ongoing concerns in the Australian and international tertiary 
education sectors about students’ transition from secondary to tertiary mathematics. 
These include falling participation rates in advanced mathematics in secondary school, 
declining enrolments in university mathematics, less stringent university entry 
requirements, and increasing failure rates in first-year university.  
 Students who performed very well in secondary school often struggle at university 
with topics such as differentiation from first principles and integration by substitution, 
topics they studied in secondary school. Even after two semesters of university 
mathematics, students still have major difficulties with these topics, and failure rates of 
30–35% are not uncommon across some first-year mathematics courses. Do students 
who only studied one mathematics subject at high school struggle more than those who 
did two? Do students who perform well at secondary school somehow lose their 
knowledge between the end of secondary school and the start of university some four 
months later, or did they not really have a good understanding at school yet somehow 
managed to get good grades? 

Enrolment numbers in secondary school advanced 
mathematics 
The number of students studying higher level mathematics in Australian secondary 
schools declined in the mid–late 1990s and early part of this century. Although the raw 
numbers of students studying mathematics in the last two years of secondary school is 
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increasing (due to more students completing Year 12), the proportion of students 
taking advanced mathematics dropped from 14.1% of the Year 12 student population in 
1995 to 10.1% in 2010 (Barrington, 2011). The decrease was more marked in 
Queensland (Mathematics C—13% in 1995, to a low of 7.9% in 2002, and 8.7% in 2012), 
the state of interest in this paper.  

 

Figure 1. Year 12 mathematics numbers 1995–2010 (Barrington, 2011). 

 Several years ago universities throughout Queensland introduced a bonus point 
system to attract more students to study advanced mathematics (and languages) at 
school. Raw numbers of enrolments have slightly increased yet the overall percentage is 
still only 10.1% nationally (8–8.7% in Queensland). The start of the decline in advanced 
mathematics enrolments coincided with universities removing prerequisites from their 
engineering courses, yet there are other reasons as well.  
 The Maths? Why Not? project (McPhann, Morony, Pegg, Cooksey & Lynch, 2008) 
found several such reasons why students are less willing to take advanced mathematics 
at school. The project investigated mathematics teachers’, school counsellors’, and (to a 
lesser extent) students’ beliefs as to why students were not choosing to study higher 
level mathematics in their last two years of secondary school. The reasons stated as to 
why students were not choosing to study higher level mathematics in their last two 
years of secondary school can be grouped into five categories: 

•  school influences;  
•  university influences; 
•  sources of advice influences; 
•  individual influences; and 
•  other influences. 
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 While the Maths? Why Not? report was a first in Australia-wide data collection on 
reasons for choosing senior secondary mathematics, its findings are somewhat limited. 
As noted, students were not the main group asked why they were not choosing to study 
higher level mathematics, mathematics teachers and school counsellors were. The 
author is currently undertaking a Queensland state-wide research project on the 
transition from secondary school to tertiary mathematics by focussing on the students 
as they progress from school to university.  

Secondary-tertiary transition in mathematics:  
The University of Queensland context 
The University of Queensland (UQ) is Queensland’s oldest university and is a member 
of the G08 and Universitas21. It has a history of attracting the highest achieving 
students in Queensland and northern New South Wales and has not had a strong focus 
on supporting the transition from secondary to tertiary learning environments. UQ had 
(and still has) higher entry score requirements than other universities for many 
programmes and had strict prerequisites that had to be studied at school before 
enrolment.  
 Since the move from elite to mass education, many prerequisites for degrees have 
been removed, with students able to study these former prerequisites once they are at 
university. These take the form of bridging courses that typically cover secondary 
school content of science and mathematics courses, yet they only run for one semester 
compared to two years at secondary school. Consequently, in these bridging courses it 
is impossible to teach the same amount of content, and, importantly, students do not 
have as long a time period to understand and consolidate the material, and develop 
automaticity and fluency.  
 The removal of prerequisites had an immense effect on the nature of engineering 
cohorts in particular. Until the mid-1990s students had to have studied at secondary 
school both intermediate and advanced mathematics, plus chemistry and physics, in 
order to enrol in engineering. Since the mid-1990s, students have only needed 
intermediate mathematics plus chemistry or physics to enrol. (UQ was the first 
Queensland university to drop the advanced mathematics prerequisite for engineering. 
All other universities soon followed suit.) As a consequence, only 60 to 70% of recent 
first-year engineering students have studied both intermediate and advanced 
mathematics at school (The University of Queensland, 2007–2013). This has left 30–
40% of students entering engineering without two years of further integration, 
matrices, vectors, sequences, series, and complex numbers, all important topics for 
engineering. 

First-year mathematics courses at UQ 

Students who have not studied advanced mathematics at high school study 
Mathematical Foundations, a course which revises some of the intermediate 
mathematics content (namely trigonometry, functions, differentiation, and integration) 
then looks at matrices, vectors, sequences, series, and complex numbers. This 
semester-long course has 500–600 students enrolled in first semester: approximately 
65% engineering students and 25% science students. Upon successful completion 
students then study Calculus and Linear Algebra 1 the following semester, perhaps at 
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the same time as Multivariate Calculus. Students who have studied advanced 
mathematics at high school go straight into Calculus and Linear Algebra 1 in first 
semester. 
 Comparisons of the mathematical abilities and understanding of these two groups of 
students (high school intermediate mathematics only and high school intermediate and 
advanced mathematics) are performed at the beginning of first semester via diagnostic 
testing. Diagnostic testing, one of the suite of innovations introduced to address 
transition issues and the increased diversity of backgrounds, knowledge, and abilities, 
was reintroduced in 2007 after a 20 year break. The tests over the last seven years have 
revealed that many first-year students appear to remember, or understand, little of 
their Year 11 and 12 mathematics in comparison to topics they had studied in primary 
and early secondary school. Questions on calculus, an area only studied in Years 11 and 
12, had the lowest success rate. Students who had studied intermediate and advanced 
mathematics subjects at high school performed better on all questions than those who 
had just studied intermediate mathematics, and students performed considerably 
better in topics to which they had more exposure (see, for example, Jennings, 2008, 
2009, 2011; Kavanagh et al., 2009). However, the results suggest that for both groups, 
students’ understanding of the topics most recently studied, in this case, differentiation 
and integration, appear not to have been strongly consolidated, with students not 
having developed automaticity and fluency.  
 One question in the diagnostic test that showed considerable difference between the 
two groups was that involving a definite integral. While most students could integrate a 
polynomial, only 30% of the intermediate mathematics only cohort could evaluate an 
elementary definite integral (the integral from x = 0 to 2 of 2x+3, with respect to x), 
whereas 75% of the intermediate and advanced mathematics cohort were successful. 
This difference could be explained in part by the extra unit of integration (30 hours 
worth) that students studying advanced mathematics at high school do. 
 Integration is approximately one-sixth (35 hours) of the Queensland Years 11 and 12 
intermediate mathematics syllabus and includes the following topics:  
 

• Definition of the definite integral and its relation to the area under a curve; 
• The value of the limit of a sum as a definite integral; 
• Definition of the indefinite integral; 

• Rules of integration: ∫ a f(x) dx, ∫ [f(x) ± g(x)] dx , ∫ f(ax+b)
  

1
ax+b

dx;  

• Indefinite integrals of simple polynomial functions, simple exponential functions,  

sin (ax + b), cos (ax + b) and 1 ÷ (ax+b) 
  

1
ax+b

; 

• Use of integration to find area; 
• Practical applications of the integral; 
• Trapezoidal rule for the approximation of a value of a definite integral 

numerically. 
Advanced mathematics includes an extra 30 hours of integration, including:  

• Integrals of the form: 
  

f '(x)
f (x)

dx∫  ∫ [f' (x) ÷ f(x)] dx, ∫ f(g(x)).g'(x) dx; 

• Simple integration by parts; 
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• Development and use of Simpson’s rule; 
• Life-related applications of simple, linear, first-order differential equations with 

constant coefficients; 
• Solution of simple, linear, first-order differential equations with constant 

coefficients. 
 Mathematical integration is a fundamental skill that all engineering students will be 
required to use at various stages and levels throughout their undergraduate and 
professional lives. Given that 70% of the advanced mathematics bridging subject cohort 
are engineering students, the lack of facility with integration at the beginning of 
university is a cause for concern. The overlap between high school advanced 
mathematics and what is taught in the advanced mathematics bridging course is not a 
perfect match; only integration by substitution is taught in the bridging course. 
Integration by parts and first-order differential equations are taught at various times in 
the other three compulsory mathematics courses for engineers. Simpson’s rule is never 
taught.  
 Over the last five years students who have studied the advanced mathematics 
bridging course have had considerable difficulty with integration by substitution 
questions on end of semester examinations. Even after another semester of study 
(Calculus & Linear Algebra 1) students’ results on integration questions (including 
integration by substitution, parts, and partial fractions) are disappointing, with average 
marks in all questions less than 50%. This is of grave concern to both mathematics and 
engineering staff. Jennings et al. (2012) are currently working on a project to improve 
students’ ability to understand and apply mathematical integration to a variety of 
problems across the entire length of the engineering degree. 
 By contrast, students going straight into Calculus & Linear Algebra 1 after doing 
both intermediate and advanced mathematics at school perform better in not only 
integration questions, but also differentiation. Another interesting point to note is that 
a student’s final grade in the advanced mathematics bridging course is a very good 
predictor of success in higher mathematics courses. Data over the last seven years 
reveal that a student who passes with the lowest possible pass (a grade of 4 out of 7) 
will generally find it difficult to pass Calculus & Linear Algebra 1 in the next semester. 
Until recently, engineering students who studied only advanced mathematics at school 
would study the bridging course in first semester, then both Calculus & Linear Algebra 
1 and Multivariate Calculus in second semester. A clear majority of students with a low 
pass in the bridging course who attempted both courses in the same semester failed 
both. As a result, Multivariate Calculus is now also offered over summer semester, and 
students with a low pass in the bridging course are advised to study Calculus & Linear 
Algebra 1 in second semester then Multivariate Calculus over summer. Students with a 
credit, distinction, or high distinction (5, 6, 7 out of 7) in the bridging course perform 
well in both Calculus & Linear Algebra 1 and Multivariate Calculus in second semester.  

Conclusion 
The title of this paper is ‘I want to do engineering at uni; should I study one maths 
subject or two in Years 11 and 12?’  The short answer is ‘two’! It is perhaps not 
surprising that students who study both intermediate and advanced mathematics at 
high school perform better in university mathematics subjects. The extra subject means 
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two extra years of mathematics and two more years of thinking mathematically. It has 
to count for something. While bridging courses are offered at university, their short 
nature does not allow students to catch up on the work they would have done in the 
same subject at high school. In addition, students who just pass the bridging course 
generally struggle in subsequent mathematics courses.  
 With only 8–10% of students across Australia studying advanced mathematics at 
school, some would say the future is grim if these numbers do not increase. “Australia 
will be unable to produce the next generation of students with an understanding of 
fundamental mathematical concepts, problem-solving abilities and training in modern 
developments to meet projected needs and remain globally competitive” (Mathematics 
and Statistics: Critical Skills for Australia’s Future, The National Strategic Review of 
Mathematical Sciences Research in Australia, 2006, p. 9). 
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TIMSS (Trends in International Mathematics and Science Study) 2011 is the fifth in 
a series of international mathematics and science assessments conducted every 
four years. TIMSS is designed to provide trends in fourth and eighth grade 
mathematics and science achievement in an international context. This paper 
reviews the mathematics achievement of eighth-graders from ten Asia-Pacific 
countries (Australia, Chinese Taipei, Hong Kong, Indonesia, Japan, Korea, 
Malaysia, New Zealand, Singapore and Thailand) that participated in TIMSS 2011. 
The achievement data show that Korea, Singapore, Chinese Taipei, Hong Kong and 
Japan ranked as the top five countries respectively. The paper also examines 
Number test items, for the topic fractions and decimals, that Australian students 
found relatively difficult and speculates some instructional issues that may explain 
the poor achievement.  

Introduction 
TIMSS (Trends in International Mathematics and Science Study) 2011 is the fifth in a 
series of international mathematics and science assessments conducted every four 
years. TIMSS is designed to provide trends in fourth- and eighth-grade mathematics 
and science achievement in an international context. In TIMSS 2011, 45 countries 
participated at the eighth grade level. The Asia-Pacific countries that participated at the 
eighth grade were Australia, Chinese Taipei, Hong Kong, Indonesia, Japan, Korea, 
Malaysia, New Zealand, Singapore and Thailand. Data was collected from participating 
students, their teachers and school leaders with the help of assessment tasks and 
background questionnaires. The TIMSS 2011 International Results in Mathematics 
(Mullis, Martin, Foy & Arora, 2012) is a comprehensive report of all the data collected 
and analysed for mathematics assessment of grades four and eight students. This paper 
draws on the data from the report and discusses the achievement of grade eight 
students from Asia Pacific countries. It also examines Number test items, for the topic 
fractions and decimals, that Australian students found relatively difficult and 
speculates some instructional issues that may explain the poor achievement.  
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Student participants and tests 
Representative samples of eighth graders participated in the study. They were in their 
eighth year of formal schooling with average ages ranging from 14.0 to 14.5 years. The 
TIMSS 2011 tests comprised of both mathematics and science items. Fourteen different 
booklets containing a selection of the 215 mathematics and 217 science items were 
administered to the students. Each student completed the test in one booklet. Testing 
time was 90 minutes. The 217 mathematics items (118 multiple choice and 99 
constructed response type) were classified by content domain and cognitive domain. 
The four content domains were Number, Algebra, Geometry, and Data and Chance, 
while the three cognitive domains were Knowing, Applying and Reasoning (Mullis, 
Martin, Ruddock, Sullivan & Preuschoff, 2009). 

Mathematics achievement 
Table 1 shows the ranking and average scale scores of the Asia-Pacific countries that 
participated in TIMSS 2011 and TIMSS 2007. The five East Asian countries were in the 
top five ranks for both TIMSS 2011 and TIMSS 2007. Korea, Singapore, Chinsese 
Taipei, Hong Kong and Australia improved their average scale scores in 2011 compared 
to 2007, and Australia made a significant upward move to the 12th place with an 
average scale score higher than the international average of 500.  

Table 1. Rank and average scale scores of Asia-Pacific countries. 

 TIMSS 2011 TIMSS 2007 
Country Rank Average Scale 

Score 
Rank Average Scale 

Score 
Korea, Rep of 1 613 (2.9) 2 597 (2.7)* 

Singapore 2 611 (3.8) 3 593 (3.8)* 

Chinese Taipei 3 609 (3.2) 1 598 (4.5)* 

Hong Kong, SAR 4 586 (3.8) 4 572 (5.8) 

Japan 5 570 (2.6) 5 570 (2.4) 

Australia 12 505 (5.1) 14 496 (3.9) 

International Avg - 500   

New Zealand 16 488 (5.5) - - 

Malaysia 26 440 (5.4) 20 474 (5.0) 

Thailand 28 427 (4.3) 29 441 (5.0) 

Indonesia 38 386 (4.3) 36 397 (3.8) 

Standard errors are shown with ( ). 
* No significant difference between average scale scores  

International benchmarks of mathematics achievement 
The international benchmarks presented as part of the TIMSS 2011 data (Mullis, 
Martin, Foy & Arora, 2012) help to provide participating countries with a distribution 
of the performance of their eighth-graders in an international setting. For a country the 
proportions of students reaching these benchmarks perhaps describe certain strengths 
and weaknesses of mathematics education programs of the country. The benchmarks 
delineate performance at four points of the performance scale. Characteristics of 
students at each of these four points are elaborated in the next section.  
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 Table 2 shows the percentage of students from the Asia-Pacific countries reaching 
TIMSS 2011 international benchmarks of mathematics achievement. It is worthy to 
note that almost half of the students from Chinese Taipei, Singapore and Korea were at 
the Advanced benchmark. Furthermore in all the five Asia-Pacific countries that were 
ranked as the top five, more than 70% of their students were at the High benchmark 
level, with the exception of Japan (61%) and almost 90% of their students were at the 
Intermediate benchmark level. In contrast, particularly for Australia, only 9% of their 
students were at the Advanced Benchmark level and 29% at the High benchmark level. 
Nevertheless the proportions of students from Australia at the advanced and high 
benchmarks have improved compared to TIMSS 2007. In TIMSS 2007, only 6 % were 
at the advanced level and 24 % were at the high level. For New Zealand, only 5% were at 
the advanced level and 16% of the students were below the low level. For Malaysia, 
Thailand and Indonesia, only 2% or less of the students were at the advanced level and 
35%, 38% and 57% of students respectively were below the low level.  

Table 2. Percentages of students reaching TIMSS 2011 international benchmarks of 
mathematics achievement. 

Country Advanced 
benchmark 
(625) 

High 
benchmark 
(550) 

Intermediate 
benchmark 
(475) 

Low 
benchmark 
(400) 

Chinese Taipei 49 (1.5) 73 (1.0) 88 (0.7) 96 (0.4) 

Singapore 48 (2.0) 78 (1.8) 92 (1.1) 99 (0.3) 

Korea, Rep of 47 (1.6) 77 (0.9) 93 (0.6) 99 (0.2) 

Hong Kong SAR 34 (2.0) 71 (1.7) 89 (0.7) 97 (0.3) 

Japan 27 (1.3) 61 (1.3) 87 (0.7) 97 (0.3) 

Australia 9 (1.7) 29 (2.6) 63 (2.4) 89 (1.1) 

New Zealand 5 (0.8) 24 (2.6) 57 (2.8) 84 (1.6) 

Malaysia 2 (0.4) 12 (1.5) 36 (2.4) 65 (2.5) 

Thailand 2 (0.4) 8 (1.3) 28 (1.9) 62 (2.1) 

Indonesia 0 (0.1) 2 (0.5) 15 (1.2) 43 (2.1) 

International 
Median 

2 17 46 75 

Standard errors are shown with (  ) 

 

What can students at each of these benchmarks do? 

Advanced International benchmark  

At the advanced international benchmark students can 
• reason with information, draw conclusions, make generalizations, and solve 

linear equations; 
• solve a variety of fraction, proportion, and percent problems and justify their 

conclusions; 
• express generalisations algebraically and model situations; 
• solve a variety of problems involving equations, formulas, and functions; 
• reason with geometric figures to solve problems; and 
• reason with data from several sources or unfamiliar representations to solve 

multi-step problems. 



KAUR 

MATHEMATICS: LAUNCHING FUTURES 
110 

Figure 1 shows an item that students reaching the advanced benchmark were likely to 
answer correctly. 
 
Content Domain: Number 
Cognitive Domain: Reasoning 
Description: Given two points on a number line representing 
unspecified fractions, identifies the point that represents their 
product 

Country Percent 
correct 

Chinese Taipei 53 (2.0) 
Hong Kong SAR 47 (2.5) 
Singapore 45 (2.0) 
Korea, Rep of 44 (2.0) 
Japan 43 (2.1) 
Australia 23 (2.1) 
New Zealand 19 (2.3) 
Malaysia 18 (1.4) 
Thailand 12 (1.5) 
Indonesia 10 (1.7) 

 

International Avg 23 (0.3) 

Standard errors are shown with ( ). 

Figure 1. An advanced international benchmark item. 

High international benchmark  

At the high international benchmark students can 
• apply their understanding and knowledge in a variety of relatively complex 

situations; 
• use information from several sources to solve problems involving different types 

of numbers and operations; 
• relate fractions, decimals, and percents to each other; 
• basic procedural knowledge related to algebraic expressions; 
• use properties of lines, angles, triangles, rectangles, and rectangular prisms to 

solve problems; and 
• analyse data in a variety of graphs. 

Figure 2 shows an item that students reaching the high benchmark were likely to 
answer correctly. 

Intermediate international benchmark  

At the intermediate international benchmark students can 
• apply basic mathematical knowledge in a variety of situations; 
• solve problems involving decimals, fractions, proportions, and percentages; 
• understand simple algebraic relationships; 
• relate a two-dimensional drawing to a three-dimensional object; 
• read, interpret, and construct graphs and tables; and 
• recognise basic notions of likelihood. 
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Figure 3 shows an item that students reaching the intermediate benchmark were likely 
to answer correctly. 
 
Content Domain: Data and Chance 
Cognitive Domain: Applying 
Description: Constructs and labels a pie chart representing a 
given situation 

Country Percent 
correct 

Singapore 85 (1.5) 
Korea, Rep of 85 (1.4) 
Chinese Taipei 80 (1.7) 
Hong Kong SAR 76 (1.8) 
Japan 75 (1.7) 
Australia 67 (2.3) 
New Zealand 59 (2.5) 
Malaysia 50 (2.2) 
Thailand 45 (2.3) 
Indonesia 28 (2.2) 

 
The answer shown illustrates the type of student response that was given 2 of 2 
points 

International Avg 47 (0.3) 

Standard errors are shown with ( ). 

Figure 2. A high international benchmark item. 

Content Domain: Geometry 
Cognitive Domain: Knowing 
Description: Given a net of a three-dimensional object, 
completes a two-dimensional drawing of it form a specific 
viewpoint 

Country Percent 
correct 

Japan 89 (1.2) 
Australia 87 (1.2) 
Korea, Rep of 85 (1.3) 
New Zealand 84 (1.7) 
Singapore 83 (1.4) 
Hong Kong SAR 77 (2.0) 
Chinese Taipei 74 (1.7) 
Malaysia 53 (1.8) 
Thailand 51 (2.4) 
Indonesia 27 (2.2) 

 
The answer shown illustrates the type of student response that was given 1 of 1 
points 

International Avg 58 (0.3) 

Standard errors are shown with ( ). 

Figure 3. An intermediate international benchmark item. 



KAUR 

MATHEMATICS: LAUNCHING FUTURES 
112 

Low international benchmark  

At the low international benchmark students have some knowledge of whole numbers 
and decimals, operations, and basic graphs. Figure 4 shows an item that students 
reaching the low benchmark were likely to answer correctly. 
 
Content Domain: Algebra 
Cognitive Domain: Knowing 
Description: Evaluates a simple algebraic expression 

Country Percent 
correct 

Korea, Rep of 92 (1.0) 
Chinese Taipei 91 (1.0) 
Singapore 91 91.1) 
Japan 86 91.5) 
Hong Kong SAR 83 (1.8) 
Australia 71 (2.6) 
Indonesia 65 (2.4) 
New Zealand 61 (2.6) 
Thailand 56 (2.2) 
Malaysia 47 (2.1) 

 

International Avg 71 (0.3) 

Standard errors are shown with ( ). 

Figure 4. A low international benchmark item. 

Performance of Australian students on some Number items 
In this section we examine the performance of Australian students on the 13 Number 
items for the topic: Fractions and Decimals from the pool of TIMSS 2011 released items 
(see http://timssandpirls.bc.edu for complete set of released mathematics items for 
grade 8). Table 3, shows the percent correct for each of the items. The data for 
Singapore students and the international average score is also shown in the table. This 
allows us to add a perspective of the achievement of fellow students from Singapore on 
the items and the opportunity to learn the relevant content at the respective year levels. 
 Thompson, Kaur, Koyama and Bleiler (2013) noted that in comparative studies 
achievement scores must be examined alongside with the opportunity to learn for 
students in their respective school systems. In a country like Australia that have state 
based schooling systems with their respective curriculum guidelines for mathematics it 
is almost certain that not all Year 8 students would have had the opportunity to learn 
the topic fractions and decimals to the same depth. In contrast, the Skills, Properties, 
Uses and Representations (Thompson & Kaur, 2011) of aspects of fractions and 
decimals tested by the 13 items were in the intended mathematics curriculum for 
Singapore students spread across Years 3 to 5. As shown in Table 3, for most of the 
items the achievement of students from Singapore was certainly at mastery level. 
Thompson et al (2013) noted that Singapore and Japan provide opportunities for 
students to learn number concepts earlier in the primary curriculum compared to the 
US and that students in Singapore were more likely to master concepts during the 
grade at which they were first introduced, at least through grade 3, than was true for 
students in Japan and US.  
 Barry Kissane and Marian Kemp from Western Australia (WA) were both 
approached by the author for some insights into the possible reasons about the 
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achievement of Australian students. In their email communication (Kissane & Kemp, 
personal communication, February 7, 2013) they speculated the following issues that 
may be associated with the achievement of students in Australia: 

• Profiles of Year 8 students across Australia vary as in some states it is the first 
year of secondary school while in others it is the second; 

• Variations in state based intended curriculum (certainly in 2011); 
• The intended curriculum serves only as a guide. Therefore the implemented 

curriculum is subject to variation;  
• Lack of exposure to the test format of TIMSS; 
• Generally the curriculum focuses on understanding numbers, their 

representations and nature of operations before focussing on calculation.  
• As the items are focused on calculation of one form or another and equivalence, 

students in Year 8 may not be ‘ready’ to do such items.  
– For example, calculating with fractions (item 3.7) would rarely be 

something that students did in Year 8, we suspect, and perhaps more likely 
in Year 9. The language of ‘a correct method’ may also be problematic. We 
suspect that many WA Year 8 students would not regard any of the choices 
offered as a correct method, as they would not have been taught the 
standard algorithm that is involved in the question. They would certainly 
not have spent much time practicing the use of the algorithm, either, even if 
they had seen it. 

– In Item 3.12 knowing how to calculate percentages of quantities, knowing 
that division is not commutative is more likely to be familiar to Year 9 
students than to Year 8. 

– Item 3.8 involves solving a proportion, and we would be surprised if Year 8 
students were experienced at such things, which are very hard. They may do 
it in Year 9 or even Year 10 level. 

– Item 3.13 is described as Reasoning, with which we agree, although it does 
depend on thinking about calculations with fractions and decimals (as well 
as a level of comfort with the algebraic representation of P × Q = N. It would 

surprise us if Year 8 students were familiar with all the necessary things to 
get this right. Year 9 is a more likely year for that. 

– Item 3.10 is also more likely to be Year 9 work, involving calculation with 
fractions. 

– Item 3.11 involves conversion from fractions to decimals and rounding to a 
specified number of decimal places. We would place this as more typical of 
Year 9 than Year 8 also.  

– The only other item we would place beyond Year 8 is Item 3.6, which would 
seem to fit at the end of the Calculate section, involving estimation. It’s the 
idea of a ‘best’ estimate that suggests to us that it is more characteristic of 
Year 9 than Year 8. 

• Year 8 students in WA are expected to do Items 3.1, 3.2, 3.3, 3.4, 3.5 and 3.9. In 
these items their achievement ranged from 67% - 82% compared to 92% - 96% 
for students in Singapore. The significant difference in the achievements, aside 
from cultural and motivational factors, may be a consequence of time on task. 
Assuming that the time in school devoted to maths is the same in the two 
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countries our hunch is that Singapore students may do more maths practice 
outside school than typical Year 8 students in Australia do. While most Year 8 
students would get homework, it would generally be a small amount (and often 
regulated by the school), and frequently not done by lots of students. The idea of 
practising something to reach mastery levels would not be typical Year 8 
behaviour (at least for the bottom half of Year 8 students), we think.  

Table 3. TIMSS 2011 Grade 8 mathematics released items for the topic Fractions & Decimals. 

Percent correct Item no 
TIMSS ID 
Type 
Cognitive 
Domain  

Description of Item 
AU SG Int Avg 

3.1 
M052216 
MC 
Knowing 

Which number is equal to 3/5 ? 
A 0.8    B 0.6    C 0.53    D 0.35 
Answer key: B 

70 (2.7) 96 (0.7) 68 (0.3) 

3.2 
Mo52231 
CR 
Knowing 

42.65 + 5.748 =  
Answer: ______________ 
Correct response 48.398 

82 (2.0) 94 (0.8) 72 (0.3) 

3.3 
M042032 
MC 
Knowing 

Which fraction is equivalent to 0.125 ? 
A 125/100             B 125/1000 
C 125/10 000       D 125/100 000 
Answer key: B 

67 (1.8) 93 (0.9) 70 (0.3) 

3.4 
M042024 
MC 
Knowing 

 
Which number does K represent on this number 
line? 
A 27.4    B 27.8    C 27.9    D 28.2 
Answer key: 27.8 

73 (2.3) 94 (1.0) 54 (0.3) 

3.5 
M032094 
MC 
Knowing 

4/100 + 3/1000  = ______ 
A 0.043         B 0.1043 
C 0.403         D 0.43 
Answer key: A 

68 (1.8) 92 (1.1) 62 (0.3) 

3.6 
M032166 
MC 
Knowing 

Which of these is the BEST estimate of  
(7.21 × 3.86)/10.09 ? 
A (7×3)/10        B (7×4)/10 
C (7×3)/11         D (7×4)/11 
Answer key: B 

66 (2.5) 92 (1.1) 57 (0.3) 

3.7 
M052228 
MC 
Applying 

Which shows a correct method for finding 
 1/3 – 1/4 ? 
A (1–1)/(4–3)          B 1/(4–3) 
C (3–4)/(3×4)          D (4–3)/(3×4) 
Answer key: D 

34 (2.7) 83 (1.5) 37 (0.3) 

3.8 
M042031 
MC 
Applying 

The fractions 4/14 and �/21 are equivalent. What is 
the value of �? 
A 6    B 7    C 11    D 14 
Answer key: A 

45 (2.2) 83 (1.6) 50 (0.3) 

3.9 
M042041 
MC 
Applying 

A workman cut off 1/5 of a pipe. The piece he cut 
off was 3 metres long. How many metres long 
was the original pipe? 
A 8 m    B 12 m    C 15 m    D 18 m 
Answer key: C 

79 (1.7) 92 (1.1) 70 (0.3) 

3.10 
M032064 
CR 
Applying 

Ann and Jenny divide 560 zeds between them. If 
Jenny gets 3/8 of the money, how many zeds will 
Ann get? 
Answer: ___________ 
Correct response: 350 

34 (2.2) 76 (1.6) 27 (0.3) 
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3.11 
M032725 
CR 
Knowing 

Write 3 5/6 in decimal form, rounded to 2 
decimal places. 
Answer: _______ 
Correct response: 3.83 

31 (2.4) 73 (1.5) 25 (0.3) 

3.12 
M052214 
MC 
Knowing 

Which of these number sentences is true? 
A   3/10 of 50 = 50% of 3 
B   3% of 50 = 6% of 100 
C   50 ÷ 30 = 30 ÷ 50 
D   3/10  × 50 = 5/10 × 30 
Answer key: D 

36 (2.1) 67 (1.6) 41 (0.3) 

3.13 
M032662 
MC 
Reasoning 

 
Answer key: D 

23 (2.1) 45 (2.0) 23 (0.3) 

Legend: AU – Australia; SG – Singapore; Int Avg – International Average;  

MC – multiple choice item; CR – constructed response item 
Standard errors are shown with ( ). 

Concluding remark 
It is evident that curriculum alignment across the states as well as push towards 
mastery of concepts and skills taught at respective grade levels are necessary for 
improvement of achievement scores of Australian eighth graders in future TIMSS 
cycles of testing.  
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Spatial visualisation is an important aspect of everyday life. It is also an important 
tool for success in mathematics and science studies. Research has shown spatial 
visualisation is challenging to teach and difficult to learn. Experiences with 
geometrical figures and solids in the primary years supports the development of 
this important skill. This paper, reports on a one week intervention in a Year 5/6 
class that focused on students’ spatial visualisation skills. 

 
We think spatially in many everyday situations such as interpreting a map, putting flat 
pack furniture together, interpreting a diagram and packing a suitcase. Shapes and 
their manipulation are so much a part of our daily lives that we hardly notice the 
actions involved (Ehrlich, Goldin-Meadow & Levine, 2006). Information is often 
presented in a visual format that requires interpretation and processing to make sense 
of it, but many people do this so naturally that rarely do they stop to consider the ways 
in which they are thinking (Presmeg, 1986; van den Heuvel-Panhuizen & Buys, 2005). 
 In mathematics, this type of thinking takes on a deeper significance. As indicated by 
Battista (2007), visualisation is an important tool for success in developing geometric 
concepts which are associated with success in mathematics and science. These 
disciplines form the basis for further study or employment in the fields of mathematics, 
science, technology, engineering, medicine and arts (Newcombe, 2010). Experiences 
with figures in the primary years of schooling may assist in abstract reasoning about 
reflection in secondary school mathematics (van den Heuvel-Panhuizen & Buys, 2005). 
 Lohman (1979) suggests that spatial visualisation is the ability to construct, retain, 
retrieve and manipulate visual images, and underpins much of the geometry in 
secondary school. Although spatial visualisation is not explicitly stated in the Australian 
Curriculum, Mathematics, (Australian Curriculum, Assessment and Reporting 
Authority [ACARA], 2012), it is explored under the Geometry and Measurement 
content strand. In USA, the National Council of Teachers of Mathematics (NCTM) 
Standards (2000) states “students should develop visualisation skills through hands on 
experiences with a variety of objects. Later they should become comfortable in drawing 
perspective views, counting component parts and describing attributes that cannot be 
seen but can be inferred” (p. 43).  
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 Providing opportunity for students to experience hands on learning in the context of 
spatial visualisation can be challenging for teachers, as many teacher resources use two 
dimensional (2-D) representations of the real world that need to be reinterpreted as 
three dimensional (3-D) objects. Using images in place of objects can be difficult, yet it 
is necessary that students learn to interpret the 2-D representations of their world. 
Students need to be able to make sense of the information from 2-D images as well as 
representing this information about the real world with 2-D drawings. 
 Spatial visualisation is challenging to teach and difficult to learn. When working 
with teachers on a project to improve students’ capacity to use 3-D models and 
represent them as 2-D representations, Nivens, Peters and Nivens (2012) found that 
many of them were apprehensive about teaching the topic as they “lacked the 
confidence in their geometric abilities and their knowledge of the vocabulary” (p. 346). 
If teachers are not confident with thinking spatially and/or cannot recognise when they 
are thinking spatially, then they may have some difficulty in adequately teaching their 
students about this type of thinking. 
 Researchers have nominated strategies which may improve the way students 
develop spatial skills. These include: 

• having teachers and parents understand what spatial visualisation is and the 
kinds of pedagogical activities and materials to support its development 
(Newcombe, 2010);  

• encouraging, supporting and modelling engagement in age-appropriate tasks of a 
playful nature. This can be through books, language, providing opportunities to 
imagine, jigsaw puzzles, and making sketches of 2-D and 3-D shapes;  

• using technologies that are useful in developing spatial ability such as taking 
photos with a camera, to look at different points of view. Computer software is an 
option, although many teachers will not be as familiar with relevant programs, as 
they were not exposed to them when at school. These programs include drawing 
programs such as Geogebra and LOGO (Battista, 2007) as well as computer 
games like Tetris (Newcombe, 2010); 

• providing concrete experiences that allow children to build, draw and read 
drawings (Ben-Chaim, Lappan & Houang, 1988). 

 This paper describes a 60-minute lesson that was part of a one-week classroom 
intervention in a Grade 5/6 class (10 to 12 year olds). The focus of the study was to 
gauge the impact of such an intervention on students’ spatial visualisation skills 
relating to 2-D representations of 3-D objects. An overview of the lesson sequence 
provides some background to the task selection, the content, materials used, and where 
the lesson described in this paper was situated.  

Overview of the lessons 
The lessons discussed in this paper were adapted from tasks on the Maths 300 website 
(http://www.maths300.esa.edu.au) and Mathematics in Context—Side Seeing 
(National Center for Research in Mathematical Sciences Education & Freudenthal 
Institute, 1997). These lessons were chosen because of their problem solving nature, 
and their clear connections to real life. The students were provided with an opportunity 
to play, collect data and use problem solving strategies and basic skills, to prove or 
disprove any theories which may arise (Lovitt, 2000). 
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 The following aspects of the representation and the concrete objects were considered 
when planning the lesson sequence.  
1. Picture to object view—from a picture create an object using manipulatives.  
2. Object to picture—from an object create a picture. 
3. Picture to picture—which of the following shapes would fit in to complete the 

large object. 
4. Word to picture—listening to instructions and creating a model from it. 
5. Words to object (Bishop, 1977). 
 The materials used in the lessons were chosen because of their flexibility and 
usefulness. As the use of manipulatives, such as the whiteboard, in the lesson proved to 
be a novelty for the students, ‘play’ time was incorporated into the start of subsequent 
lessons, before introducing a ‘tuning in’ activity. In the first lesson, students were asked 
to look at everyday items taken from home (drink bottle, milk bottle, football, etc.) and 
draw them from different perspectives. Cubes were used in the other lessons as they are 
the basic units for the 3-D dimensional objects. All the lessons allowed the students to 
build, draw and evaluate 3-D objects. They also provided the opportunity for students 
to manipulate materials.  
 The first two lessons introduced the students to drawing objects from different 
points of view, i.e., taking an everyday 3-D object, and representing it as a 2-D picture.  

• Lesson One: Point of View, in which the students were introduced to the concept 
that looking at objects from different perspectives produces different results. Also 
included in this lesson was the challenge of creating a sketch of a 3-D object in 2-
D. Students were also challenged to imagine what they would see if they were 
sitting at the other side of the room, and to draw this image.  

• Lesson Two: Cube Nets, had the students creating a cube from GeoShapes and 
determining which nets will create a cube. This lesson was to highlight the fact 
that all 3-D objects have a 2-D representation. It also provided the opportunity to 
view data not as numbers, but as the nets they had created. From this, the 
challenge was to see if there were any patterns evident from the data.  

 In subsequent lessons, students were provided with the opportunity to manipulate 
cubes and objects in order to see them from different points of view: front, left, right, 
back and top. They also drew the objects and buildings in two different ways, 
orthogonal (front, side and top views), which is like a plan, as well as isometric (using 
triangular dot paper to draw cube buildings side on). Using the isometric dot paper 
required the student to turn the cube so that it was viewed from a corner. Reading the 
“plans” and creating the building was another aspect of the lessons. An outline of each 
of these three lessons follows: 

• Lesson Three: Blocks and Buildings helped the students to develop their ability to 
communicate and reason about 2-D representations of 3-D objects, and 
highlighted the importance of language. It was important for students to realise 
that not all elements of a building are in view and that some blocks are hidden, 
depending upon the viewer’s position. 

• Lesson Four: Block Views followed on from the previous lesson where students 
realised that in some 3-D drawings it is inconclusive as to how many blocks might 
have been used to make a building, as some could be obscured, and therefore top 
views could be different. Block views highlighted that the top view alone does not 
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always give the information about the number of stacked blocks in each section of 
the building; several versions of the building are therefore possible. 

• Lesson Five: Four Cube Houses, in which the students were architects designing 
houses, each using four cubes, for a housing estate. The first investigation was to 
find the 15 different constructions (given particular constraints) that could be 
made from four cubes, and then the students constructed plans of all the houses 
for council, using isometric drawings. 

 The remainder of this paper describes the first lesson, Point of View. The lesson 
began with the students seeing three everyday items, a mug, drink bottle and milk 
container placed on a table in the centre of the room. The table could be seen by all 
students from their seats. We were aware that the students had not had any experience 
in the mathematics classroom in relation to perspective drawings. Students were asked 
to draw what they could see of the objects in the centre of the room (Figure 1). The use 
of the mini whiteboard was intentional as it allowed the students to ‘have a go’, and 
should they not be satisfied with the result their initial sketch it easily be erased. The 
‘have a go’ attitude is one we were hoping to encourage throughout the series of lessons 
as this would be when we believed that real learning would take place. 

  

Figure 1. The objects on the table and an example of one student’s representation of these.  

 Once students had completed their sketch, we asked three volunteers from different 
positions in the room (who had done a reasonable job) to bring their sketches to the 
front for all to see (Figure 2). These students described their sketches to the class and 
then we posed the following question, “We are all looking at the same objects, so why 
are our sketches different?” 
 The language the students used to describe the positions of the objects on a table 
was clear as they were able to correctly use positional language such as middle, left, 
right, front and back. We were also able to determine that one view had to be identified 
as the front view. Signs were placed on the table to indicate each of the views. The top 
view was described as a ‘bird’s eye’ view. The students were also able to confidently 
discuss why it depended on where you were standing to get a particular view. 
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Figure 2. Students share their sketches with the class. 

 A different set of objects was then placed on the table. Students were asked to divide 
their white boards in half by drawing a line with their marker. On one side of the board 
they were to sketch what they could see from their seats. The other half of the board 
was for a sketch of what they thought they may see if they were sitting on the opposite 
side of the room (Figure 3). 

 

Figure 3. A student’s sketch of what she saw from her seat, on the left and what she imagined, 
on the right. 

 On completion of their sketches the students placed their boards on their seats and 
moved around the room to look at each other’s sketches. During our walk, one girl let 
out a shriek, which grabbed the attention of all in the room. With everyone looking at 
her she embarrassingly said that she did not even know there were three objects on the 
table because from her seat she could only see two. This was a perfect lead into a real 
teaching moment, that often in sketches information may be missing and a form of 
abstraction is required (Battista, 2007). 
 In the class discussion that ensued students mentioned imagining, however the 
terms visualise or visualisation were not mentioned. They noticed that the sketches 
were similar to the objects, but that some of the information was missing. From this we 
were able to highlight that the 3-D objects may be curved, but the curves cannot always 
be easily shown in a 2-D representation, if they are facing you and we have to use 
strategies to find a solution. Some of the strategies they suggested included imagining 
themselves at the other side of the room viewing the objects, or physically place 
themselves in the position to see the object from another viewpoint.  
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 To conclude the lesson, students were asked to draw a top view of the five items on 
the table. They were then given five photos of the five objects from different viewpoints 
around the table (taken prior to the lesson). Each photo had a letter in the corner as a 
reference for the students to use. The students’ task was to indicate on their drawing on 
their whiteboard where the photographer was standing when taking each photo. The 
purpose of this task was to highlight further that what we see is very much dependent 
on where we are standing. Often we are not able to see some aspect of the object and 
must infer what an image may be. Imagining a different perspective is still very difficult 
for 11 year olds as they still have egocentric responses (Rigal, 1996).  
 At the conclusion of the lesson the students, were posed the following question 
“What mathematics have we attended to in our lesson today?” One student replied, 
“None, we were doing art”. Another agreed with this statement, as we were drawing 
and had not used numbers. 

Insights from this lesson 
As the students developed their understandings, they knew what to do, and they also 
improved their skills to mentally visualise and manipulate these sketches. The 
opportunity to physically manipulate objects and make connections aided this 
development. Exposing the students to an activity and manipulatives alone, will foster 
some improvement, however questioning students and asking them to explain their 
mathematical thinking is vital. The discussion relating to what the objects might look 
like from different viewpoints revealed the different strategies that drew on their use of 
spatial visualisation. Rigal (1996) mentioned they may also imagine the rotation of the 
objects, but this was not evident in this lesson. Providing students with more 
opportunities to engage in experiences such as this may have revealed the use of this 
strategy and opportunities for students to make connections between 3-D objects and 
their 2-D representations.  
 It was interesting to note that throughout the intervention, those students who were 
considered “good” at mathematics often found some of the drawing very challenging 
and were not comfortable in situations where their sketches were on display. On the 
other hand, some students who were considered “weaker” at a number of components 
of mathematics were very engaged and interested and proved generally successful in 
tasks. Wheatley and Wheatley (1979) suggested that this may be dependent on which 
side of the brain the information is processed. 
 For some students, making a start on this task proved quite a challenge. Prompts, 
which have been described as “strategies that can be directed at students when they 
need to be more supported, rather than have the students listen to additional 
explanations” (Sullivan, Mousley & Zevenbergen, 2006), were used throughout the 
lesson. An example of such a prompt was the use of the screen of the digital camera. 
Taking the picture at eye level and reviewing it was converting the 3-D object to a 2-D 
representation (Figure 4). The simple prompt was able to focus the students’ attention 
as to what they were required to draw.  
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Figure 4. Using the camera as a prompt enabled some students to make links and correctly 
understand the task. 

 The lesson described in this paper highlights ways in which students can engage in 
hands on learning experiences relating to spatial visualisation. Providing 
manipulatives, which are everyday items in a student’s environment, and experiences 
that enable them to represent 3-D objects as 2-D representations may assist them to 
interpret the 2-D representations of 3-D objects. As teachers we need to have an 
appreciation of the complexity associated with spatial visualisation in order to guide 
our students. Although only one lesson was described in this paper it is evident that a 
five day, short sharp, focused, intervention can be a useful vehicle for increasing 
students’ spatial visualisation skills, in particular 2-D representations of 3-D objects. 
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It is essential to retain a focus on building students’ mathematical reasoning and 
comprehension rather than merely developing superficial understanding through 
procedural learning. All too often this approach ‘takes a back seat’ because of 
examination and assessment pressure, where the importance of ‘How?’ supersedes 
that of ‘Why?’ It is not what we teach that is important so much as how we teach it. 
This session explores conceptual methods in the teaching of Secondary 
mathematics. It will appeal to both new and seasoned teachers, providing food for 
thought and suggesting practical approaches to teaching mathematics for 
understanding rather than regurgitation. 

Introduction 
Many teachers of mathematics find the time pressures and constraints of examination 
and assessment driving them towards teaching by rote learning instead of developing in 
their students a deep conceptual understanding of the material being covered. When 
students embark on university courses, their subsequent ability to cope with new 
material and novel problems and applications is hampered by their lack of solid 
mathematical foundations. Teachers need to be encouraged to present mathematics in 
a variety of ways which enhance the systemic understanding of concepts and the 
development of a systematic methodology. 
 Political and social pressures of examination-based assessment and achievement 
standards have inevitably dictated what and how we teach. The teaching of 
mathematics has, in many secondary school classrooms, become so dominated by 
assessment that ‘the tail is wagging the dog’. A preoccupation exists to equip students 
with the skills necessary to ‘pass the test’ and this in turn, prescribes a procedural 
approach to teaching mathematics. This ‘How’ based style of teaching leads to concepts 
not being properly taught and understood, due to perceived time pressures teachers to 
get their students ‘up to speed’ on examination-style questions. Instead of 
examinations existing to assess mathematical knowledge and reasoning, they are seen 
as the raison d’être of the course and students are taught on a ‘need to know’ basis with 
exploration beyond the constraints of exam questions actively discouraged in many 
mathematics departments. Unfortunately, teaching ‘to the test’ is often an effective 
method of achieving good marks and it is possible to achieve creditable performances 
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in mathematics examinations without really understanding any of the underlying 
concepts. By contrast, ‘enrichment’ is often seen as an intangible add-on for the 
brightest classes, an alternative to ‘acceleration’ and one which does not bring with it 
any concrete benefits. 
 In my opinion good teaching and good examination results are not mutually 
exclusive; indeed there is a strong positive correlation between the two. Mathematics 
teachers have an obligation to ensure that the ‘Why’ is taught together with the ‘How’ 
and that students’ examination performance is indicative of their general 
comprehension of the subject. Learning is seldom a linear process and in order to 
develop mathematical deductive reasoning, students will necessarily need to struggle to 
develop their own understanding and reasoning processes, with plenty of bumps and 
hiccups along the way. In the words of Lao Tsu (Giles, 1905, p. 45) “Failure is the 
foundation of success, and the means by which it is achieved.”5 This can be 
disconcerting for teachers and students alike and both must be prepared for a turbulent 
journey. Much of what is presented here could be labelled ‘enrichment’, which has often 
come to mean ‘more than just teaching what they need to know (to answer questions)’. 
My firm contention is that the methodology of all teaching should endeavour to include 
such ‘enrichment’. 

Example topic 1: Pythagoras’ Theorem 
I have chosen to look at Pythagoras’ Theorem by way of an example topic, to 
demonstrate the two different approaches to teaching mathematics, the procedural or 
‘How’ and the conceptual or ‘Why’ approach. 
 A ‘How’ approach would involve teaching the formula c2 = a2 + b2 for a right-angled 
triangle, explaining how to identify the hypotenuse and showcasing examples of typical 
questions which occur: finding the hypotenuse, finding one of the other sides, applying 
to ‘real world’ questions. This could be achieved in a few lessons with little or no 
conceptual enlightenment attained in the areas of mathematical proof or method, but 
rather a superficial understanding of how to answer questions based on a formula 
which we call Pythagoras’ Theorem. 
 By contrast, a ‘Why’ approach might introduce the topic with a hands-on 
investigation such as Perigal’s Dissection (Figure 1). Created in 1838 by Henry Perigal 
(1801–1898), a London Stockbroker and amateur mathematician, the construction 
consists of a right angled triangle with squares drawn on each of the sides. One of the 
adjacent sides is then dissected by drawing lines through its centre, parallel to the sides 
of the largest square and the four quadrilaterals formed can be rearranged, together 
with the square on the other adjacent side, to fit exactly inside the square on the 
hypotenuse. This is not a formal ‘proof’, but is a good graphical illustration and 
introduction to Pythagoras’ Theorem; indeed Perigal (1891) postulated that Pythagoras 
probably discovered his theorem with a similar if not identical approach. The students 
can then be asked to propose a generalisation of their result using algebra. This is a 
constructivist approach to teaching Pythagoras’ Theorem which can then be followed 
up by some examples demonstrating a more formal rigorous proof. It is a more 
powerful technique than the ‘How’ approach, as it encourages students to build their 

                                                

5  Lao Tsu (c. 604–531 BC) was the founder of Taoism. 
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own knowledge and conclusions and to generalise their results. Not only will students 
be less likely to confuse the hypotenuse with the other two sides if they have this 
graphical foundation, but they will be more likely to remember and understand the 
theorem in the long-term. 

 

Figure 1. Perigal’s dissection—a graphical illustration of Pythagoras’ Theorem. 

There are many proofs of Pythagoras’ Theorem and students should be exposed to 
some of these, in order to understand the important mathematical concept of proof and 
its essential role in forming the structure of mathematical reasoning. Animated 
graphical proofs can be found on sites such as YouTube, for instance: 
http://www.youtube.com/watch?v=ajuUO8h0IxY and a variety of algebraic proofs are 
readily available from text books and online. Pythagoras’ Theorem can then be applied 
to standard problems involving right-angled triangles with the students conceptually 
understanding the underlying ‘truth’ behind the theorem. 

Example topic 2: The distance formula 
Many teachers teach their students to find the distance between two points (x1, y1) and 

(x2, y2), using the ‘distance formula’: 
  
d = ( x2 − x1 )2 +( y2 −y1 )2 . But this formula could 

just as correctly be written: 
  
d = ( x1 − x2 )2 +( y1 −y2 )2  or 

  
d = ( x2 − x1 )2 +( y1 −y2 )2 . This 

unwieldy formula simply represents Pythagoras’ theorem where the two ‘adjacent’ sides 
are the difference in the x and y values of the coordinates. There are any number of 
such ‘rules’ to learn for a typical Senior Mathematics course and it is tempting to just 
tell students to ‘learn’ and apply the formulas by rote without attempting to explain 
where they come from. 
 
A ‘why’ approach to teaching this topic emphasises that the distance between two 
points can be found by looking at the right-angled triangle formed by the difference in x 
and y coordinates (see Figure 3). The distance squared is the difference of the x 
coordinates squared plus the difference of the y coordinates squared. This provides a 
wonderful opportunity to introduce the symbols Δy and Δx meaning ‘a change in’ y and 
x respectively, long before calculus appears on the scene. It also provides a much more 

understandable formula:   d
2 =Δx2 +Δy2  and facilitates the comprehension of the 
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difference between, say, x values of 2 and –1 being 3 rather than 1 (these two values 
straddling the y-axis). 

 

Figure 2. Considering Pythagoras’ Theorem, the distance, d, between two points is the 
hypotenuse of a right-angled triangle, with adjacent sides formed by the difference in x and y 

values, Δx and Δy respectively.  
Thus:   d

2 = Δx2 +Δy2 . 

Why do we learn mathematics? Where will I use this in life? 
Perhaps the most haunting question in mathematics teachers’ classrooms is: “Where is 
this going to be useful in life?” It is a common misconception that topics within 
mathematics are useful in most people’s lives. Educators, politicians, text book and 
syllabus writers frequently fall into the trap of attempting to justify the teaching of 
mathematics by rationalising its usefulness to the real world. However, attempting to 
validate the place of mathematics in our curriculum merely on the grounds that it is 
‘useful’ does the opposite. Excusing the learning of mathematics as merely being a 
‘useful’ skill, minimises our discipline to one of utilitarianism. No other subject 
experiences such a pressure to validate its place in the classroom in terms of 
‘usefulness’ to life. When do most people ‘use’ Art, English literature, music theory, 
history, or the sciences on a daily basis? 
 Whilst ‘numeracy’6 may indeed be useful, the sort of mathematical topics and 
procedures we teach from Year 7 onwards are not ‘useful’ in most people’s day to day 
life. They can be invaluable in specific situations and specific occupations, but even as a 
teacher of mathematics, I do not ‘use’ simultaneous equations or trigonometry very 
often outside my teaching. 
 But that does not mean that it is not important to learn mathematics as a rigorous 
academic discipline. Mathematics is important. It is an abstract system of logical, 
deductive reasoning and methodology, which is pure and perfect (i.e., true). This 
discipline is useful, as it allows us to engage and communicate in higher order and 
abstract thinking across a spectrum of subjects and life events. Mathematics is the only 
thing we can ‘prove’ to be correct (based on some fundamental axioms). For most 
students, learning mathematics can be considered as a mental parallel to weight 
training. This analogy is a very effective way of explaining to students the importance of 

                                                

6  In fact the word ‘numeracy’ is an ill-defined but ubiquitous term whose meaning appears to be 
commonly understood in politics and education to suit the given situation, but it was in fact invented 
by a committee in 1959 (the Crowther Report on UK Education) to represent the ‘mirror image of 
literacy’. 
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correct and systematic method and for addressing ‘Why are we doing this?’-type 
questions. Of course, recent brain research highlighted in books such as The Learning 
Revolution by Dryden and Vos (1999) suggests that the process of studying 
(mathematics or otherwise), grows dendrites and makes connections between the 
neurons in the brain in an analogous way to weight training creating muscle fibre and 
toning the physique. 
 So the real benefit, to most students, of studying mathematics is that it develops 
their higher-order skills such as deductive reasoning and logical and organisational 
thinking. Once their brain has been developed in this way they will be able to use and 
further develop these ‘brain muscles’ in any number of useful contexts in their lives, 
utilising pathways and connections originally developed in the mathematics classroom. 
 We can say that the ‘effects of studying mathematics’ are extremely useful for 
everybody! 

Maths makes you ‘mentally fit’ 

However, like weight training, brain development with mathematics only works 
effectively if you are doing the ‘exercises’ correctly. We like to find ways of doing 
exercises which do not ‘hurt’ and are easier, but they do not necessarily yield the same 
results. Another analogy I frequently use is to liken my role as a mathematics teacher to 
that of a personal trainer. A personal trainer may ‘spot’7 a client who is bench pressing, 
but that client will only be improving muscle tone if he himself is doing the majority of 
the work in moving the weights up and down (which involves intensive effort and 
focus). Once the personal trainer becomes the main source of power in moving the bar, 
the client is simply holding onto the bar whilst the personal trainer gives his own arms 
a good workout, lifting it up and down. From an observer’s perspective the two 
situations appear identical, but only the former will yield muscle development in the 
client. It is easy to presume that just because students are answering mathematical 
questions, they are successfully learning, but I would contend that it is how they are 
learning which matters most in their brain development. Thus, the process is as all 
important in developing mathematical reasoning as it is with weight training in 
building and toning muscle fibre. These are all good analogies which can be used with 
students to convince them to set their work out correctly and take the time to work at a 
speed where they can be assured that each stage of their working is 100 percent correct. 
 The method and process are the only things which matter in studying mathematics, 
not the answer—that is usually in the back of the book! 

Example topic 3: Rearranging equations—a focus on method 
Traditionally, rearranging equations was taught by learning the four ‘rules’ of taking 
items ‘over the equals sign’. Adding became subtracting and vice versa and 
multiplication became division, but confusion often existed with which number was 
divided by which and why? Fortunately most teachers now use the analogy of a balance 
beam and explain that in order to maintain balance, whatever you do to one side of an 
equation you must do to the other. There are now many excellent animated visual 

                                                

7  ‘Spotting’ in weight training means assisting in pushing a weight. Typically in order that the client 
maximises their physical capability to ensure optimal muscle development. 
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resources, such as the ‘Algebra Balance Scales’ from the National Library of Virtual 
Manipulatives (Utah State University, 2010) which can be used to reinforce this 
analogous idea of an equation as a balance beam. This is a ‘why’ approach, but one 
which needs to be further enforced with a rigorous adherence to method.  
 I insist that my students write down at every stage what they are doing to both sides 
of an equation in manipulating the algebra (see Figure 3). This is the ‘metacognition’ of 
mathematics. I also insist on lining up the equals signs, so the correspondence to the 
fulcrum of a balance beam is maintained. I encourage students to use coloured pens 
and write down what they intend to do to both sides before writing the next line in their 
working. To this end, I always have a set of brightly coloured pens in my classroom and 
gladly give them out to students who want to use them (for the metacognition only!). It 
also helps if the ink smells of strawberries! 

 

Figure 3. Setting out equations with the metacognition on the right hand side. 

I emphasise to students that I am not particularly interested in the answers, which 
appear in the back of the book in any case—these are merely a way to check whether the 
working is error-free—I am only interested in the ‘process instructions’ which take you 
from line to line. I commend good working with a system of reward stamps and do not 
reward correct answers which are not set out in this exemplary manner. Initially 
students find the process monotonous, but so, I argue, is lifting weights—once they see 
how easily the result ‘falls out’, and how neat their work looks, they take it in their 
stride. I always set my work out like this on the board (at every level—including the 
highest level of Senior Mathematics—we must exemplify what we preach!). 

Inverse (or ‘undoing’) operations 

I believe it to be important to introduce the concept of inverse (or ‘undoing’) processes 
as early as possible in Year 7 or 8. For instance, the inverse (or undoing function) of +3 
is –3 (see Figure 4). 

 

Figure 4. Function ‘machines’ showing the inverse processes +3 and –3. 

If students are fluent with the concept of an inverse, it comes as no surprise that inverse 
trigonometry functions are required to ‘undo’ trigonometric functions. For instance, the 
inverse (undoing function) of sin( ) is called arcsin( ) or sin–1( ) (see Figure 5). I also like 
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to use analogous ‘real-world’ functions and their inverses, such as silver plating and de-
silver plating and discuss how different a function and its inverse are, typically, to each 
other. We also discuss ‘self-inverse’ functions such as the reciprocal function or, for 
instance the function 10–x. 

 

Figure 5. Function ‘machines’ showing the inverse processes sin( ) and sin–1( ). 

We can see how to apply this to solve an equation 
 
5=

2
sinθ

 in Figure 6. 

 

Figure 6. Setting out correct metacognition (or ‘what are you doing at every step to both 
sides’) including an inverse trigonometric function to ‘undo’ the function sin( ). 

Similarly, the inverse of an exponential function is called a logarithm (see Figure 7). 
This is how I introduce the topic of logarithms and builds a conceptual ‘why’ 
understanding rather than the more usual procedural definition of logarithms, adopted 
by most teachers and text books. 

 

Figure 7. Function machines showing the inverse (undoing) of an exponential function ax. 

Logarithms can then be used to ‘undo’ their respective exponential functions as in 
Figure 8. Where the equation 2x+3 = 91 is solved in this manner. 

 

Figure 8. Using the base 2 logarithm function to ‘undo’ a base 2 exponential function 2x. 
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 Frustratingly, most calculators do not have a base n logarithm function, although 
this is beginning to change with new models8. Nevertheless, students can apply base 10 
logarithms to generate a numerical answer to the same equation as can be seen in 
Figure 9, using logarithm rules. This generates a solution which is equivalent to that of 
Figure 8, and deduces the ‘change of base’ rule (we can conclude from this example that 

 
log2 91 =

log10 91

log10 2
). 

 

Figure 9. Using the base 10 logarithm function to ‘undo’ a base 2 exponential function 2x. 

Conclusion 
Mathematics is a science but mathematics teaching is an art; invention is the key to 
inspirational teaching and learning. It is important to keep fresh as a teacher of 
mathematics; to come up with new analogies and ways of explaining topics and never 
to be afraid to try something new and ‘off-the-wall’. Sometimes it works and adds to 
your repertoire and sometimes it does not. But even if the analogy falls down or you 
realise you could have explained it better after you have already made an attempt, 
never forget that it is the process that is important—students will be learning from your 
mistakes as well as your polished set-pieces! Very often students will learn more from 
what goes wrong and how you (and they) work out what the problem is. 
 Education is all about the journey; this applies to the cyclical process of struggling, 
persisting and overcoming obstacles in producing new understanding and capacity for 
thought. It also applies equally to the outcome of education which hopefully remains 
with us long after we have left the classroom environment. American athlete Greg 
Anderson tells us to: “Focus on the journey, not the destination. Joy is found not in 
finishing an activity but in doing it.” This is equally true of teaching and learning and is 
further epitomised by a quote from the tennis player Arthur Ashe: “Success is a 
journey, not a destination. The doing is often more important than the outcome.” The 
word ‘success’ could easily be replaced with ‘education’. 
 To use another of my analogies, there are several ways to guide a group through a 
forest:  

• You can take them on well known tracks, enabling them to navigate the same 
track time and again, quickly and efficiently. This is not only boring, but virtually 

                                                

8  It is alarming that some syllabuses do not allow these calculators to be used in their examinations as it 
does not allow meaningful assessment of the ‘change of base’ logarithm rule, which ironically has only 
come to prominence as a rule, due to the lack of a base n logarithm function on calculators; a perfect 
example of the ‘tail wagging the dog’. 
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useless for future life unless they happen to be in the same forest on the same 
track. 

• You can take them ‘off-piste’ using your own navigational skills. This will give 
them more of a sense of adventure and demonstrate that it is possible to reach the 
same destination in a variety of ways. 

• You can teach them how to navigate themselves. You will be teaching them the 
skills which they can use time and again in their lives in many new and varied 
situations. 

 I enjoy inventing and taking new paths each time I teach, and believe that by doing 
so, I am equipping my students with the flexibility skills they need to be able to 
negotiate any new situation. Keeping notes for me is a sure way to become stale and I 
prefer to ‘reinvent the wheel’ with every new class, as an important strategy to keeping 
fresh, on my toes and exciting as a teacher. When a path leads nowhere, it is sometimes 
the best educational experience for your class (and perhaps for you too); in other 
words, when you make a mistake. You should never be frightened of this and indeed 
should emphasise it. You are a teacher, not a mathematics genius, but you might well 
be teaching one! 
 It is important to ask yourself ‘Why?’ when you teach every new concept and to 
avoid teaching ‘recipes’. Let your students develop procedures of their own from the 
conceptual understanding they glean. If they are unable to do so, they may not have 
totally understood the concepts and could need more work on the foundations. 
Occasionally I feel compelled to teach ‘recipes’, especially where a syllabus appears to 
be specifically written to test recall of a formula rather than conceptual understanding 
of it; or when the constraints of departmental homogeneity dictate the length of time I 
am able to spend on a particular topic, but I always endeavour to explain to students 
my reasons for this and to revisit the topic at a later date if possible, for deeper 
conceptualisation. 
 The seventeenth century English statesman George Saville once remarked: 
“Education is what remains when we have forgotten all that we have been taught”. I 
believe that the ‘why’ is the educational constituent of learning mathematics. 

References 
Dryden, G. & Vos, J. (1999). The learning revolution (2nd ed.). Auckland, NZ: The Learning Web Limited.  

Giles, L. (1905). The sayings of Lao-Tzu (trans.). Retrieved 23 May 2013 from http://www.sacred-
texts.com/tao/salt/  

Perigal, H. (1891). Geometric dissections and transpositions. London: Bell & Sons.  

Utah State University. (2010). National library of virtual manipulatives. Retrieved 23 May 2013 from 
http://nlvm.usu.edu  

 



 

MATHEMATICS: LAUNCHING FUTURES • © AAMT 2013 
133 

CONSTRUCTING KNOWLEDGE OF THE FINITE LIMIT 
OF A FUNCTION: AN EXPERIMENT IN SENIOR HIGH 

SCHOOL MATHEMATICS 

PHAM SY NAM  

Phan Boi Chau Gifted High School 
Nghe An Province, Vietnam 

phamsynampbc@gmail.com 

MAX STEPHENS 

University of Melbourne 

m.stephens@unimelb.edu.au 

 

 
A finite limit of a function is a difficult mathematical concept, even for good 
students. It is a key to the study of many areas of mathematics. Textbooks typically 
introduce two kinds of definitions of the concept of limit: a sequence version and 
an epsilon-delta version. Even able students find understanding both definitions 
difficult. Using a constructivist approach, this study used tasks that support 
students in constructing the concept of the finite limit of a function. Dynamic 
manipulations enabled students to form and verify hypotheses, reject the wrong 
ones and construct knowledge about the finite limit of a function in an easier way. 

Introduction 
The concept of the limit of a function is difficult to teach and understand. When 
presenting this concept Vietnamese textbooks for mathematically gifted students start 

for example with the function 
  
f (x)=

2x2 −8
x −2

 and then consider a sequence  
xn( )  different 

from 2 and pay attention to answering the question: If 
  limxn =2  then   lim f (xn ) = ?  

Textbooks typically use a sequence version of limit to arrive at a definition of the form:  
Let the (a;b) interval contain a point x0 and if f is a definite function on the set of 

  
a;b( )\ x0{ }.  Then the limit of function f is a real number L as x tends to x0 (or at 

points x0) if every sequence  
xn( ) in the set 

  
a;b( )\ x0{ } ( that is 

  
xn ∈ a;b( ) , and 

  xn ≠ x0 with all n) that 
  limxn = x0, we have 

  
lim xn( ) = L.  (Cf. Definition 1, Vietnam 

Education Publishing House, 2010, p. 153).  
This definition shows the close relationship between the concept of sequence limit and 
the limit of a function. This creates a number of advantages for the formation of the 
concept of the limit of a function from the concept of the limit of a sequence, and allows 
the properties and theorems relating to the limit of a sequence to be transferred to the 
properties and theorem of the limit of a function naturally. However, to make it easier 
to define the limit of a function as well as demonstrating some characteristics for 
function limit, Vietnamese textbooks also present a second definition (ε,δ version) of 

the form:  
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Let the interval (a;b) contain points x0 and f be a definite function on the set of 

  
a;b( )| x0{ }.  We say that the limit of function f is a real number L as x tends to x0 

(or at points x0) if for every positive number ε, there exists some positive number 

δ such that if 
  x ∈ (a;b)\ {x0},  the distance between x and x0 is not over δ, then f(x) 

is in distance from L not more than ε" (cf. Definition 2, Vietnam Education 

Publishing House, 2010, p. 154).  
 The challenge is how to assist students to be able to link both definitions. They can 
be assisted to connect Definition 2 with Definition 1 based on observation that when 
the value xn is close to x0 the value of  

f xn( ) is close to L. This is true for any sequence 

  xn → x0 so it should also be true for any number close to x0. However, it is not easy to 

realize this.  
 Finzer and Nick (1998) have argued that dynamic geometry software (DGS) and 
dynamic manipulations have the potential to create a new approach in teaching and 
learning mathematics in school. Can the use of dynamic models help students construct 
knowledge of the limit of a function more easily? In this article, we focus on several 
research questions: How do students construct knowledge of the concept of limited 
function through experiments on such a model? Can teaching practice based on the use 
of dynamic models help students to a guided discovery of knowledge of the limit of a 
function?  

Research framework 
From a constructivist perspective, such as that advocated by Confrey (1991), the 
following key ideas inform the research framework used this paper: 

• Individuals’ learning is not passive but active, i.e., individuals act on their 
environment to construct knowledge. 

• The process of knowledge construction is developmental and evolutional; it is not 
static but dynamic. 

• Knowledge is not an explanation of truth, but is a rationalization of individuals’ 
experiences. Thus, individually constructed knowledge, even under the same 
situation, will be different from each another 

 Knowledge can be formed through the process of inter-influence between previous 
learning and related new learning. During the learning process, pupils are able to create 
knowledge by actively involving themselves in using the existing experience so as to 
solve any contradictions which may arise to achieve a common understanding with the 
new information. 
 According to Kant, “all human cognition begins with observations, proceeds from 
thence to conceptions, and ends with ideas” (Polya, 1965, p. 103). In this sentence the 
terms “observation”, “conception”, and “idea” were used. Polya re-expressed the 
sentence as: “Learning begins with action and perception, proceeds from thence to 
words and concepts, and should end with training certain new properties of intellectual 
gift” (p. 103). 
 In designing teaching within a broad constructivist framework, it is essential to 
create conditions to guide students’ ‘self-discovery’ of knowledge of the limit of a 
function. Therefore, to make the building of knowledge successful and to achieve high 
results without taking too much time, any ‘discovery’ should be situated in a learning 
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environment with pedagogical purposes carefully planned by the teacher. Applying this 
to learning about the limit of a function by using dynamic software, students will need 
help, in particular, to pay attention to the mathematical features of the images they 
observed. 

Research design 

In this research design, the following factors are key: the teacher design schedule, the 
teaching design idea, the design of mathematical tasks, data collection and analysis. 

1. Teacher design schedule 
In the design of guided learning activities to support the concept of the limit of a 
function, Stephens (2012) pointed to the following four elements where the teacher:  

• Needs to focus on the important key conceptions of the limit of sequence, not 
focusing too much on general teaching strategies or overall descriptions on the 
limit of sequence. For example, in teaching the limit of sequence, it is important 
to focus on activities which make clear the process of confirming a sequence limit 
of 0, by considering ε as a given arbitrary small positive number, then to prove 

existence of positive number δ  such that that 
  

f (x)−L < ε,    
∀ x −a < δ.  

• Needs to have a clear plan how to respond students’ incorrect answers. 
• Should have a longer-term plan to consistently develop students’ deep 

understanding of the limit of function. 
• Should utilise concrete examples that are familiar and easy for students to 

understand to help them understand the limit of function and its relationships. 

2. Teaching design  

As stated at the outset of this paper, the concept of the limit of a function is difficult to 
teach, particularly to understand the relationship between the two definitions. To meet 
this challenge, it was important to create activities for students to understand the 
concept intuitively. Several tasks and related questions were designed in order to assist 
them to understand correctly the key ideas and to propose their own innovative ideas.  
 Task 1 is designed to help students understand the concept intuitively when x tends 
to a then f(x) tends to L. Its goal is to help them to describe clearly how f(x) tends to L 
when x tends to a. Task 1 was carried out in various levels. Initially, students determine 
the distance between x and a such that |f(x) – 8| is smaller than some given number. 
 Then they need to see that there always exists a range of values x such that |f(x) – 8| 
is smaller than any arbitrary positive number. These ideas are prerequisite for a formal 
definition of the concepts we desire students to achieve: if given an arbitrary small 
positive number ε, it is always possible to find a positive number δ so that with |x – 2| < 
δ then |f(x) – 8| < ε After students build concept of limit of function, Task 2 is 

introduced which is intended to create innovative ideas to support students’ 
formulations of the concept. 

3. Design of mathematical tasks 

It is important to design mathematical tasks and activities for students where: 
• tasks actively engage students in mathematical thinking; 
• tasks take into account students’ previous mathematical knowledge and 

experiences; 
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• a range of tools support students’ understanding of the mathematical concepts 
involved. 

 To obtain data to answer the key research questions, two mathematical tasks were 
used with two classes at Grade 11. The inclusion of Question 1 (see Figure 1 below which 
incorporated DGS in the actual classroom) was designed to help students recognize 
intuitively, that when x gets closer to 2, but different from 2, then f(x) tends to 8. 
However, to gain more detailed information about how the value of the function f(x) 
changes when x tends to 2, students were asked to perform Questions 2, 3, and 4 (see 
below). The purpose of Question 2 is to help students recognize in detail what values of 
|x – 2| are required for |f(x) – 8| to be less than 0.1; 0.01; and so on. Question 3 is 
intended to give students confidence that, if given any arbitrary small positive numbers 
ε, it is always possible to find a number δ such that |x – 2| < δ then |f(x) – 8| < ε. In 

order to deepen their understanding of the mathematics students were asked carry out 
Question 4. 

Task 1  

In Figure 1 below is graph of function 
  
f (x)=

2x2 −8
x −2

.  If x ≠ 2 then f(x) is defined. 

Consider a sequence 
  
xn =2+

1
n

,  when value of n changes then xn will change. Using a 

dynamic geometry model (available to the class) students could survey the model by 
changing the value of parameter n by dragging the parameter bar slider, which gives 
values of n as shown beneath the table in Figure 1, and observe changes in the value of 
f(x) as xn gets closer to 2. The purpose of this dynamically guided activity is to assist 
students to see that, as n becomes larger and larger, the value of xn gets closer and 
closer to 2. They can then see how this impacts on the value of f(x). 

 

Figure 1. The limit of function model. 

Question 1. Change the value of n in Figure 1 by dragging the tip of the n-parameter 
bar. What number does f(xn) tend to as n tends to positive infinity? 
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Figure 2. Dynamic δ, ε model. 

 Figure 2 shows a red ribbon (vertically) with its projection perpendicular on the 

horizontal axis generating an image of all points belonging to 
 
2−δ,2+δ⎡⎣ ⎤⎦ . It generates a 

segment on the vertical axis which is a perpendicular projection of the green 
(horizontal) ribbon. By changing the width of the vertical ribbon by dragging the tip the 
(red) bar which changes δ (See Figure 2, immediately below x0), the width, ε, of the 
horizontal (green) ribbon changes as a result. When the height of the green ribbon is 
less or equal to the length of the segment, a circle in the graph will turn green with a 
remark “inside“. Otherwise, a remark “not inside” will appear. The advantage of this 
dynamic model is that it allows students to see how smaller and smaller values of δ 
directly impact on the values of ε. As a result, students are better placed to answer the 
following Questions, 2 and 3, and to understand more deeply how these questions lead 
to Question 4 where δ and ε are introduced formally but not without prior experience. 
 
Question 2: When f(x) differs from 8 by less than 0.1; 0.01 how close does x approach 
2? Use the model in Figure 2 to explore even smaller values. 
 

with |x – 2| < …  then |f(x) – 8| < … 0,1 

with |x – 2| < … then |f(x) – 8| < … 0,01 

 
Question 3: Now we play a game. In groups of two, a first student has to start with a 
number less than 0.01, the second student has to try to find out how much smaller  
|x – 2| needs to be so that f(x) differs from 8 by a number smaller than that given by 
the first student. Then change turns and fill out the results in the following table: 
 

with |x – 2| < … then |f(x) – 8| < … 

with |x – 2| < … then |f(x) – 8| < … 

 
Question 4. Given ε is an arbitrary small positive number. Is it possible to find a 
number δ such with |x – 2| < δ then |f(x) – 8| < ε? Please give your explanation. 
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Task 2 

Question 1. How could you demonstrate that the function f(x) has a limit L when x 
tends to a? 
Question 2. To look at the image of the function graph in Figure 1, observe and make 
comments about the existence of the function limit when x tends to a, the monotony of 
the function in the interval (–∞;2)(2;+ ∞), the relation between the monotony of the 

function, function values in each interval and the results for the limit of the function. 
Please give an explanation (if possible) of the conditions for the limit of a function. 

Research results 
In this section, we focus on the four results: interactions among students, teacher’s 
support to students facing difficulty, teacher’s handling of students’ correct results, and 
teacher’s responses to students’ incorrect results. 

Interactions among students 

In the process of monitoring the work between the groups, it was found that the 
majority of students actively worked to produce results for the whole group. Each group 
took turns operating with the dynamic models that were provided. Each group 
appointed one member to operate the model, one member to record results, and the 
remaining members to make observations and recommendations to resolve any 
difficulty. The roles were rotated among the members. When facing difficulty, some 
groups discussed together and solved their problems. Members from other groups were 
ready to support those groups that were experiencing difficulty. 

Teacher’s support to students facing difficulty 

Sometimes students faced difficulty answering a question. For example, when 
operating the dynamic geometry model to answer Task 2, Question 1 in Task 2, some 
groups moved the N bar too fast, and so failed to see clearly the change of the 
corresponding value f(xn). In such cases, students were asked to move the bar so that 
the increase (decrease) of the value of n by each unit could be seen more clearly as a 
result of the changes. In Task 2, many groups initially only produced one or two results. 
They were encouraged to try to find other results by focusing on the images obtained. 
For example, let sequence 

  xn ,limxn = 1 , find 
  lim f (xn).  Make comments about 

  lim f (xn)  

and   f (1)  and what result can be generalise from this?  

 It was easy to see that the given function   f (x)  is increasing on 
 
−∞; 2( ),

  
lim
x→2

f (x)=8 , 

compare  f (x)  with   x ∈ (−∞;2)  and 8. From that propose results for general case. We 

have   f (x)> 4  with 
  
x ∈ 0:+∞( ).  

Compare 
  
lim
x→a

f (x)
 
and 4 with 

  
a ∈ 0;+∞( ).  

What result can 

be generalised from this?  

Teacher’s handling of students’ correct results 

Many good results were given by the groups. Students were asked to clarify where the 
results came from and prove them (if possible). Some results may still not be able to be 
proved, but these were valuable, because the discovery of new results did motivate 
students in seeking a deeper understanding. 
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 The first task helped students recognise that, intuitively, when x approaches 2 then 
f(x) approaches 8. When all students had completed this task, three groups were 
invited to present in more detail their results:  

“When n increases, then 
  
2+

1
n

 decreases and 
  
f 2+

1
n

⎛

⎝
⎜

⎞

⎠
⎟

 
fades to 8”.  

However, to gain more detailed information about how the value of the function f(x) 
changes when x is close to 2, students were asked to answer Question 2. The purpose of 
this question is to help the students to recognize in detail how as |x – 2| becomes 
smaller, then |f(x) – 8| can be made to be smaller than 0.1; 0.01; etc. All groups gave 
different values || satisfying the question. Summing up the results of the groups caused 
some students be surprised, their question was “Why there are so many different values 
||?” This question provided an interesting opportunity to ask the groups to clarify the 
meaning of the phrase "existence of a number …", that the students met in the form of 
the definition, and to  help them to recognize that there are infinitely many such 
numbers. 
 Question 3 is intended to give students the belief that, if given a positive number 
(later denoted as ε) no matter how small, we always find some other number (later 
denoted as δ) such that with |x – 2| < δ then |f(x) – 8| < ε. 

 
All groups results appeared 

to be correct. But in order to demonstrate a firmer mathematical demonstration, 
students needed to answer Question 4. In the results for Question 4, the groups gave 

different values. Ten groups gave a value 
 
δ =

ε
2

, and four groups gave 
 
δ <

ε
2

.  

 In the implementation of Task 2, the variety of results can be divided into the 
following categories: 

1. Results  
Results of the method of demonstration that the function f(x) having limit L when x 
tends to a. Ten groups thought that: “to prove the function f(x) has a limit L when x 
tends to a, we have to prove that every sequence of numbers 

  
xn( ),limxn =a  then 

  lim f (xn)= L .” Nine groups thought that: “Firstly consider a given arbitrary small 

positive number ε, then we need to prove existence of  a positive number δ so that 

  
f (x)−L < ε,∀ x −a < δ,x ≠a. ” These results helped the students acquire knowledge of 

results necessary for solving subsequent exercises. 

2. Result of limit existence 

Five groups thought that “limit of function when x tends to number a (if any) is 
unique”. Because proving this result was beyond the students’ ability, we just noted that 
this was the correct result. We additionally required "From the above results, give a 
proof of the function limit when x tends to a would not exist”. Five groups applied 

negative propositions to give the correct result: “If two sequences 
  

xn( ), xn
'( )  so that 

  limxn = limxn
' =a,  

  
lim
x→a

f xn( )≠ lim
x→a

f xn
'( )  then 

  
lim
x→a

f x( ) would not exist.” The results 

provided a method to prove that the function limit does not exist. Nine groups gave a 
result based on the fact that: 

  
limxn =2, lim f (xn)=2 xn +2( ) =8 to argue that: “Given

  f (x)=ax+b,  if 
  limxn = x0 then 

  
lim f xn( ) =ax0 +b ”. But only five groups could explain 

their proof. 
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3. Results in the form of inequality  

Five groups produced the results: “The function f(x) co-varied on the interval 
containing (a, b), 

  
lim
x→b

f (x)= L then  f (x) < L ∀x ∈ (a;b) ”. Four groups produced the 

results: “The function f(x) co-varied on the interval containing (a; b), 
  
lim
x→a

f (x)= L  then 

x0,   f (x) >L ∀x ∈ (a;b) ”. Three groups gave the results: “If f(x) > m for every interval I 

containing x0, except possible x0, 
   

lim
x→x0

f (x)= L  then L ≥ m”.Only one group was able to 

generalise: If f(x) > g(x) for every D (containing x0) then 
  
lim

x→x0

f (x)≥ lim
x→x0

g(x) . 

Teachers’ responses to students’ incorrect results 

When some groups gave incorrect answers, it was helpful to discuss these incorrect 
answers in front of the whole class. Firstly, teachers can ask students to check if the 
results may be based on images in the models not yet firmly proven. Secondly, teachers 
can ask students to undertake further tasks or activities hoping students will recognise 
their mistakes. Thirdly, teachers can give a counter example and ask students to check 
and compare it with the answers. 
 When producing the results for Question 1, two groups thought that: “when n 
approaches positive infinity, the value  

f xn( )  
equals 8”. This result can be obtained 

from observation that when increasing the value of n, then the red point demonstrating 
the change of the value  

f xn( ) does not move. To help these students recognize their 

error, we posed the question, "We know that 
  xn ≠2,  whether  

f xn( )  
can be equal to 8?” 

With the correct calculation of 
  
f xn( ) =2 xn +2( )  combined with 

  xn ≠2 , the students 

realized their mistake. 

 In answering Question 4, two groups gave a result 
 
δ >

ε
2

, in this case, we ask, “Is it 

possible to infer 
  
x −2 <

ε
2
< δ

 
from 

  
f (x)−8 =2 x −2 < ε ?” This helped students realise 

their mistake. In the results for the Task 2, three groups concluded that  can only 

be defined at 
  x0,  if 

  limxn = x0  then 
  
lim f xn( ) = f x0( ) . This result is true only if the 

function is continuous, but the concept of continuous functions had not yet been 
learned. Two groups thought that: if   f (x)>m  for every interval I containing 

  x0,  except  

possible 
  x0,

  
lim

x→x0

f (x)= L  then   L >m".  To help the  students realise this mistake, we 

asked them again to observe the obtained  results when doing  the Task 1, considering  
on 

 
2;+∞( )  

that f(x) > 8,compare 
  
lim
x→2

f (x)
 
and 8.  

 Thus, to acquire correct knowledge students have to go through a process that 
inevitably involves misconceptions and difficulties. The resolution of these problems 
requires students to be given suggestions by the teacher, asking them to perform 
activities necessary check the correctness of their conceptions. In explaining the 
validity of the concept, the manipulation of visual models and being able to describe the 
results mathematically was the key to success. 



PHAM & STEPHENS 

MATHEMATICS: LAUNCHING FUTURES 
141 

Conclusion 
The limit of a function is a highly abstract concept. Understanding the nature of this 
concept is an important prerequisite for mastering subsequent calculus concepts. 
During the teaching process we found that a constructivist framework, relying on and 
supported by dynamic models, gave students the opportunity to explore important 
mathematical ideas associated with idea of limit. In particular, the dynamic model 
allowed students to give a concrete meaning to and to explore the relationships 
between δ and ε, assisting students to build by themselves a proper understanding of 
the concept. Besides obtaining answers that teacher might expect, also it also appears 
that students’ answers may be incorrect, or incomplete. These represent an opportunity 
for teachers to design and implement appropriate activities to help students get the 
correct understanding and to avoid these misconceptions. Dynamic models were 
essential to these learning activities. They provided an important bridge in the teaching 
and learning of abstract concepts such as the concept of a finite limit sequence. 
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The purpose of this paper is to better inform the mathematics community about the 
ANU–AAMT National Mathematics Summer School. This two week residential 
program is for the discovery and development of mathematically gifted and 
talented students. It takes about 64 mathematics students who have one year of 
secondary school left to complete and about a dozen students who have just 
completed secondary school from all over Australia. We present the summer school 
goals, how we attempt to achieve them and why we believe that we are successful.  

Introduction 
The National Mathematics Summer School (NMSS) was established under the joint 
educational sponsorship of the Australian National University (ANU) and the 
Australian Association of Mathematics Teachers Inc (AAMT) in 1969 by the late 
Professor A. L. Blakers (AM) of the University of Western Australia. The goals and 
organisation of the school are based on the belief that mathematics holds a central 
place in every civilised society, and that Australia must encourage all of its citizens to 
develop their mathematical talents as far as possible. The school is an investment in the 
youth and future of Australia that benefits the community as a whole. The goals of the 
school are to: 

• provide opportunities for secondary school students with a real interest in (and 
talent for) mathematics to mix with similarly talented students from across 
Australia, and to develop their interest and potential in a non-competitive 
environment; 

• provide an academic program with real depth and challenges to engage the 
students in the material; 

• give students the opportunity to meet mathematicians, undergraduate and 
postgraduate students of mathematics and related disciplines, and young people 
working in the sciences; 

• give students an appreciation of research in mathematics and science; 
• provide opportunities for networking with those of similar interests and abilities, 

building contacts that are likely to prove useful in the future; 
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• draw students from a variety of backgrounds, schools and locations (including 
regional and rural); and 

• provide students with an increased awareness of the opportunities for study and 
careers in mathematics and related disciplines. 

 The main activity of NMSS is an in-depth study of three or four different areas of 
mathematics. Each is very challenging and will extend every student. In addition, the 
program is non-competitive and very much “hands-on”. The emphasis is on doing 
mathematics, not just on listening to someone talking about it. Students are given 
extensive problem sets which encourage them to explore, conjecture, argue and 
reinvent. There are always enough difficult problems to challenge even the most gifted 
of this highly-talented group.  
 Whilst NMSS is unique within Australia, there are similar programs elsewhere.9 The 
flagship course at NMSS is Number Theory; the curriculum and questions for this 
course were inspired by the legendary program10 run by Arnold Ross at Ohio State 
University. Indeed Arnold Ross himself played an influential role in the teaching 
philosophy of NMSS and taught the Number Theory course from 1975 to 1983.  
 In the remainder of this paper we first discuss the NMSS participants (both staff and 
students) and then the teaching philosophy and outcomes. As much as possible we use 
the words of the participants themselves to illustrate our points. 

The students and staff 
Each year about 64 students who are currently in Year 11 are invited to participate in 
NMSS. Final selection is made by the Director based on recommendations from 
selectors appointed in each state and territory by the relevant mathematics teachers’ 
association. There is a nominal quota roughly proportional to the population of each 
state or territory. Selection is on the basis of mathematical achievement and potential 
—in so far as this can be assessed—and each state is free to choose its own selection 
process. Existing mathematics competitions are a valuable source of information for 
selection, but additional tests, teacher nominations or other criteria are also used, since 
mathematical ability is more complicated to measure than by complete reliance on any 
one indicator. The Director also tries to ensure equity in the participation from 
different schools and regions. In addition, each year about a dozen participants are 
asked to return (we call them Experienced Students) both to further their own 
mathematical development and to assist in the educational and social program of the 
school. 
 The 64 students are divided into groups of eight for tutorials. Each group is provided 
with a tutor for three hours of tutorials each day and to provide mentoring during the 
90 minute individual study sessions in the evenings. The tutors are almost always 
former NMSS students, sometimes only a few years older than the students, with a flair 
for teaching and inspiring. 

The tutors, too, were just kinda like grown-up versions of us. (Rachel) 

                                                

9  The AMS maintains a USA-based list http://www.ams.org/programs/students/high-school/emp-
mathcamps  

10  The Ross Mathematics Program (http://www.math.osu.edu/ross/) 
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 The lecturers are chosen based on their interest and passion for teaching and 
acknowledgment by their peers as outstanding communicators of mathematics; many 
of them are former students and tutors. Even our welfare officers are expected to 
participate in the mathematical mentoring of the students (indeed at least four of our 
welfare officers have been former students). Finally, where possible, staff members and 
invited speakers are chosen to represent the greatest diversity of career paths 
(academia, government, industry, medicine, law, etc.).  

Opportunity to talk to such approachable mathematicians, equipped with the knowledge, 
experience and attitude to allow students to learn a great deal from them. (Daniel) 

I liked the breadth of experiences of the tutors. It gave us insight into the possible career 
pathways and also let us explore our interests in depth. (Samantha) 

Students meet others with similar interests and abilities and so discover that they are 
not strange or unusual. Allowing adequate time for social interactions is thus also 
critical.  

We had so much more space and scope to meet and interact with other people when it 
wasn’t all through organised activity/lectures. (Kaela) 

We can feel that we actually fit in to the community. As to me, it is a very strange but 
beautiful feeling, when I am not the one that is always left out anymore, it feels strange. 
(Yvette) 

Some of us are still friends and valuable contacts several decades later. (Leanne) 

Pedagogical philosophy 
The style of teaching at NMSS is a form of guided discovery learning (also called 
enhanced discovery learning). Topics are chosen so that students with relatively little 
mathematical background can explore easily and eventually wrestle with the deep 
ideas. This philosophy is captured in the motto “Think deeply of simple things”. 
Number Theory is the jewel in the crown and is taught every year; other topics are 
delivered each year and include Topology, Projective Geometry, Chaos Theory, 
Sequences, Game Theory, Finite Automata, Cryptography and Knot Theory. Only three 
topics are presented each year with each topic at least a week long. The choice of topics 
depends largely on lecturer expertise. (The experienced students get four topics.)  
 The choice of mathematical activities at NMSS is necessarily quite different to 
competitive activities such as the Olympiad training schools, just as training for the 
400m sprint at the Olympics in the footsteps of Cathy Freeman is very different to 
exploring and crossing the Great Dividing Range in the footsteps of Blaxland, Lawson 
and Wentworth. Our students made these comparisons. 

Olympiad maths focuses on specific types of problems and problem solving, NMSS had 
questions which were open-ended and just allowed us to explore (e.g., exploring primes, 
units, generators in different rings), which was also new and exciting. (Rachel) 

…while it was interesting to hear about what other people were doing in the different 
science fields, and what their experiences were, I preferred the way it was done at NMSS, 
with a majority of the lectures being actual maths, with [only] a couple of guest lectures. I 
think I got a lot more out of NMSS because of this. (Tim) 

 Our courses are built around daily tutorial problem sets which form “a laboratory for 
mathematical ideas”. The problems encourage students to explore and then to draw 
their own conclusions from what they find. Students first see easy questions; later, the 
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problem sets lead to explorations of increasing depth as their ability to handle abstract 
ideas grows. 

 
I liked the problem sheets because we didn’t have to answer everything; the questions 
were meant to help you explore ideas on your own and think about the subject as a whole 
instead of solving particular exercises. (Penelope)  

 In particular, many of the problem sets contain lists of conjectures (see Figure 1.) 
headed only with the instruction “Prove or disprove or salvage if possible”. Not only do 
the students get no hints as to whether the statements are true or not, they are 
encouraged to think of how to salvage false statements. 

 

Figure 1. Conjectures to investigate. 

 With such experience, students gain the confidence to apply this same approach to 
prove or salvage their own conjectures. 

…we were encouraged to think for ourselves independently rather than asking for help 
and being told what to do. Ultimately, this allowed me to see what my own mathematical 
abilities were like and to discover what I was capable of, without the help of others. 
(Emma) 

Guided reinvention is the principle that students should experience learning 
mathematics as a process similar to the process by which mathematics was invented 
(Freudenthal 1973, 1991; Treffers, 1987; Gravemeijer, 1994). Freudenthal stated that 
students should not be considered as passive recipients of ready-made mathematics, 
but rather that education should guide the students towards using opportunities to 
reinvent mathematics by doing it themselves. If students progressively mathematise 
their own mathematical activity, then they can reinvent mathematics under the 
guidance of the tutors and lecturers.  

I loved that we are solving the question, rather than mathematicians in the past. (Wonjae) 

I soon learnt to draw on the quasi-enigmatic responses from tutors and lecturers as pure 
motivation towards my own satisfying discoveries in maths. (Lauren) 

I would not be able to feel the joy I did in proving a.0=0 if I was shown a proof of it 
instead. (Tim) 

 Although most of our staff have no explicit training in education or exposure to 
pedagogical theories most of them instinctively combine modelling, coaching, 
scaffolding, articulation, reflection and exploration. This combination is intended to 
help students emulate the way experts approach mathematics and are associated with 
an educational theory called Cognitive Apprenticeship (Collins, Brown & Newman, 
1987). The very carefully designed questions on the tutorial sets themselves create the 
scaffolding and encourage explorations. The lecturers and tutors provide the modelling 
and coaching in the way mathematicians think, and the individual study sessions 
concentrate, in particular, on articulation and reflection. Our tutors continually 
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encourage students to articulate and re-articulate their ideas and reflect on any 
outcomes rather than quickly move on to new problems. 

I personally really like working with people trying to solve problems, whether by 
explaining what I have done to someone to better understand it myself, or to listen to the 
way others have solved it to learn off them. If I am working by myself for a long time I do 
tend to get distracted. (Clare) 

 Number Theory lends itself readily to this style of learning. Mason (2006) discusses 
various case studies in number theory and draws out two threads: firstly “dimensions 
of possible variation” (e.g., changing the numbers or conditions in an example) and 
secondly “range of permissible change” (e.g., does the result break when you go from 
primes to composites). These two common threads acting together lead to his idea of 
“invariance in the midst of change” which is to appreciate and express generality. See 
Figure 2 for an example of how we use these ideas to scaffold students’ exploration of 
cyclic groups. Rather than random exploration (a critique often made of conventional 
discovery learning), very specific suggestions of what to explore are made (but this 
scaffolding disappears as students gain confidence and experience). 
 

 

Figure 2. A guided-exploration question. 

Evidence of transformation 
Renzulli and Reis (1997) consider three factors important for the development of gifted 
behaviour: above average ability, creativity, and task commitment. In particular, the 
third factor, task commitment, includes perseverance and self-confidence. 
Unfortunately, many of our students are accustomed in secondary school to getting 
every problem correct on the first (or second) attempt, and to be able to complete 
mathematical tasks in a single sitting. When confronted with the self-guided discovery 
type activities their perseverance and self-confidence may be tested for the first time. 
We want our students to be in what Vygotsky (1978) calls the Zone of Proximal 
Development (ZPD) also colloquially referred to as a ‘stretch zone’ that surrounds a 
student’s ‘comfort zone’. If the problems become too hard, students may find 
themselves in their ‘panic zone’. The variety of questions and tutor guidance ensure 
that students move out of the comfort zone into the stretch zone without destroying 
their self-confidence.  

I have never admitted “I don’t know” so many times before NMSS, and I suppose that’s a 
good thing when it comes to school too. (Neha) 

The inspiration to tackle challenges, regardless of how difficult they may seem or how 
stupid I may feel. (Jessica) 

NMSS has also helped me reconsider my attitude towards maths—I do not have much 
self-confidence, but NMSS taught me not to give up on problems too quickly and not to 
panic if I can’t immediately see a solution. (Penelope) 
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 By the end of the two weeks, most of the students are amazed at how much they have 
accomplished and post-school surveys indicate that the NMSS has succeeded in raising 
their intellectual horizons.  

Compared to school mathematics learning, NMSS maths was far more unexpected, 
required far more intuitive jumps, was far harder—but was also far more interesting… 
maths was far more than repetitively deriving hundreds of expressions that look exactly 
the same (as is much of school maths, unfortunately), and [NMSS] has really given me a 
powerful incentive to study maths at a higher level than school. The ability to discover 
mathematics, create and prove your own theorems, create your own fields, rings and 
surfaces was a wonderful change from any other mathematics I have ever been exposed 
to. (Jonathan) 

I learned that math is about understanding. I have spent a lot of years in my life doing 
questions for the teachers to tick the boxes, and then they went on when I want to 
understand… I appreciate the people [who] gave me time and allowed me to ask questions 
in this summer school. (Yvette) 

Embracing the ‘after-math’ 
Students leave NMSS knowing that mathematics is far more than applying formulas or 
churning through problems and getting the answers correct. Participants see a much 
broader view of mathematics than at school They question, struggle and discover; learn 
about conjecture and proof first hand; and discover the research experience. The 
potential of some students is amazing and cannot be realised easily at secondary 
school. NMSS lasts just two weeks, but it opens up new mathematical worlds. Students 
develop higher-level skills and become more mathematically able.  
 It is imperative to take every chance available to build this potential. An excellent 
example of how great this potential can be is Terence Tao, one of the world’s best 
mathematicians. He attended NMSS at the age of 10. He first competed in the 
International Mathematical Olympiad the same year (the youngest participant to date 
in either program) subsequently winning a bronze, silver and gold medal. He went on 
to win the Fields Medal (mathematics’ highest honour, comparable to the Nobel Prize). 
 Two weeks of mixing with staff who are enthusiastic about mathematics, together 
with hearing NMSS alumni talk about their careers and the role that mathematics has 
played, gives some idea of the large number of careers that use mathematics11. Our 
alumni have spoken about careers in the sciences, IT, philosophy, accounting, teaching, 
management, finance and much more. Increasing the understanding and interest of 
some of our brightest students can pay huge dividends when several decades later some 
go on to high level and influential positions in society.  
 The students leave the school having had fun. In their feedback some weeks after the 
school, many say that their time at NMSS has been the best two weeks of their life. At a 
time when we hear too often about people finding mathematics hard, hating it and 
proudly stating that they are hopeless at mathematics, it is wonderful to see our 
students leave full of pride and enthusiasm for mathematics.  
 NMSS has even inspired others to follow our example. Two former NMSS students, 
Tara Murphy and James Curran, are the co-directors of the National Computer Science 
School. Tara and James developed the current Computer Science School from a 
regional school into a national residential program with a structure and pedagogy 

                                                

11  http://www.amsi.org.au/careers/career-resources gives many examples of jobs requiring mathematics. 
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inspired by NMSS.12 For more information about NMSS, including information on 
selection, contact the lead author of this paper or go to www.nmss.org.au. 
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This paper explores how a secondary school in western Sydney used educational 
research as an impetus to change its mathematical education culture over a three 
year period. Key changes ocurred in four areas: leadership; pedagogy; structures 
for teaching and learning; and mathematical environments. These included 
increased professional conversations, adoption of a numeracy lesson structure, 
regular use of manipulatives and open ended tasks and a structured intervention 
program for mathematically vulnerable students. Critical to the development of 
these changes were partnerships with a university academic and the CEDP system 
leadership team as well as school leadership participation in professional learning. 

Introduction 
The Melbourne Declaration on Educational Goals for Young Australians (MCEETYA 
2008) recognised that numeracy is an essential skill for students in becoming 
successful learners at school and in life beyond school, and in preparing them for their 
future roles as family, community and workforce members. The numeracy continuum, 
as described by the Board of Studies NSW Mathematics Syllabus for the Australian 
Curriculum (2012, p.7), outlines a progression of learning that can be used when 
observing students working on problems in mathematics from Kindergarten to Year 10. 
The ability to make informed decisions and to interpret and apply mathematics in a 
variety of contexts is said to be an essential component of students’ preparation for life 
in the 21st century. So what can be done when evidence presents that students are 
failing to progress on this continuum despite good teaching and curriculum provision? 
In 2009, a system of Catholic schools in western Sydney developed a strategic approach 
to support its schools address this issue. 
 The National Numeracy Review Report (May 2008) provided the Catholic 
Education Diocese of Parramatta’s (CEDP) System Learning team with research 
findings and recommendations that would inform the development of a new numeracy 
strategy for its Diocesan primary and secondary schools. The CEDP investigated 
various approaches and found that the Extending Mathematical Understanding 
(EMU) program (Gervasoni et al., 2012), in association with teachers using the 
assessment interview and framework of growth points from the Early Numeracy 
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Research Project (Clarke, Sullivan & McDonough, 2002), had been shown to improve 
children’s learning and confidence with mathematics and enhance teachers’ 
pedagogical content knowledge. 
 In 2010 the CEPD launched its new numeracy strategy with the Numeracy Now 
Project that was based on these approaches with 10 primary and 4 secondary schools. 
This paper examines the learning gained during this project by one of the participating 
secondary schools. 

Context for the Numeracy Now Project at Delany College 
Delany is a Year 7–12 Catholic co-educational college providing schooling for students 
in outer western Sydney. The College has an enrolment of 420 students who come from 
38 different cultural backgrounds. The College attracts funding under the National 
Smarter Schools’ Partnership—Low SES and is part of the CEDP system of schools.  
 In 2010 the College was invited by the CEDP to join a pilot program entitled the 
Numeracy Now Project that adopted the Inquiry and Knowledge Building Cycle 
(Timperley, 2008) to inform teacher learning. This cycle highlighted the need for 
engagement in systematic evidence-informed cycles of inquiry that builds relevant 
professional knowledge, skills and dispositions. The cycle begins by identifying the 
knowledge and skills students need in order to close the gaps between what they 
already know and can do, and what they need to know and do, to satisfy the 
requirements of the curriculum. As part of this project, CEDP also engaged an 
academic partner, Dr Ann Gervasoni from the Australian Catholic University, to assist 
with further developing the Numeracy Now Project strategy and provide professional 
learning for Principals, Mathematics Leaders, and Specialist Intervention Teachers.  
 Participation in the Numeracy Now Project initially involved the Principal and 
School Mathematics Leader participating in a 6-day professional learning course that 
focused on instructional leadership in mathematics; development and implementation 
of a school action plan that was supported by CEDP teaching educators; assessment of 
students using the Mathematics Assessment Interview (MAI) (Clarke et al., 2002); and 
provision of the Extending Mathematical Understanding Intervention Program 
(Gervasoni et al., 2012) for students who are mathematically vulnerable.  
 The professional learning program provided the College with access to research 
findings and professional learning about the work of highly effective mathematics 
teachers, instructional leaders and the characteristics of productive learning 
environments. As part of this process, the leadership team developed an action plan to 
implement and report upon during their initial year of professional learning.  
 The development of the team’s action plan began with first assessing the Year 7 
students’ whole number knowledge using the MAI developed as part of two research 
projects, the Early Numeracy Research Project (Clarke, Sullivan & McDonough, 2002) 
and the Bridging the Numeracy Gap Project (Gervasoni et al., 2010). This was the first 
time that the interview had been systematically used in a secondary school context. The 
MAI data was most revealing and useful for the leadership team in focusing their action 
plan. The data demonstrated that many students did not have the whole number 
knowledge that their teachers assumed, but also highlighted exactly where the 
curriculum, instruction and class organisation needed to be refined to best enable all 
students to learn. The MAI data also highlighted that many Year 7 students were 
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mathematically vulnerable in various whole number domains (see Table 1). Table 1 
shows the percentage of Year 7 students determined to be vulnerable in each of the four 
domains at Delany in 2013. These results are typical of cohorts enrolled in the College 
as evidenced by MAI data collected over a four-year period, 2010 to 2013.  

Table 1. 2013 Delany College Year 7 MAI summary data. 

 

Changes in leading mathematics learning and teaching 
Key to the success of the Numeracy Now Project was collaboration with an academic 
partner, and support from CEDP in adopting a leadership triad (team) model that 
included the College Principal, a Teaching Educator from the CEDP and one of the 
College’s Lead Teachers. This involvement of school leadership ensured that the project 
gained traction (Hargraves & Fink 2006) and was more likely to lead to sustained 
changes to practices that would become imbedded in the culture of the classroom and 
College. 
 From the earliest beginnings of the Numeracy Now Project, the Delany College 
Principal took a hands-on role in leading the project. Attending the EMU Leading 
Mathematics Learning and Teaching course, along with the Teaching Educator and 
Lead Teacher, was the beginning of a discourse founded in research and peppered with 
readings provided by the academic partner, Dr Ann Gervasoni. The four CEDP 
secondary schools involved in the Numeracy Now Project in 2010 were breaking new 
ground, along with the research partner, as the earlier research had not ventured into a 
secondary setting before this project. An important strategy employed by the team was 
to introduce the mathematics faculty to accessible academic papers that did not 
overawe the teachers but stimulated discussion and sometimes vigorous debate. This 
was an important strategy to ensure buy-in of all stakeholders; imposed change rarely 
evolves to be sustainable (Hargraves, 2006; Timperley, 2009). Professional dialogue 
amongst the mathematic faculty was also informed by research which challenged 
assumptions about the use of assessment data. Using Timperley’s (2009) observations, 
the teachers looked at the MAI data through a different lens and asked the question, 
“was the data more about the students’ knowledge and understandings or was the data 
stimulating questions to reflect upon teacher effectiveness in aiding students’ progress 
on the learning continuum?” Timperley and Parr (2009) argue that 

…making such changes is complex. Not only are changes in professional knowledge and 
skills of the use of assessment data required, but teachers also need deeper pedagogical 
content knowledge so that they are able to respond constructively to what the data is 
telling them about changes needed to their practice. (Timperley and Parr, 2009, p. 24) 

 In leading a faculty of very able and experienced Mathematics teachers, the team 
decided to use the Inquiry and Knowledge Building Cycle as a segue to explore the 
Australian Association of Mathematics Teachers (AAMT, 2006) Standards for 

MAI Whole Number Domain % Vulnerable (n 88) 

Counting 65% 

Place Value 82% 

Addition & Subtraction Strategies 36% 

Multiplication & Division Strategies 60% 
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Excellence in Teaching Mathematics in Australian Schools. The call for a deeper 
Professional Knowledge in Domain 1 evoked conversations around how students learn 
mathematics and how indeed the mathematics teachers could enhance mathematics 
learning.  
 A significant moment in the learning journey occurred in the latter half of the first 
year of involvement in the Numeracy Now Project when one of the members of the 
mathematics faculty summed up a discussion about the use of the MAI data when he 
said, “We cannot possibly proceed with our programming for next year’s Year 7 cohort 
unless we know what they know and can do.”  
 Domain 1.3 (Knowledge of Students’ learning of mathematics) in the AAMT 
standards helped the teachers and the team rationalise the need for new ways of 
knowing and new ways of teaching that in turn called for change.  

Excellent teachers of mathematics have rich knowledge of how students learn 
mathematics. They have an understanding of current theories relevant to the learning of 
mathematics. They have knowledge of the mathematical development of students 
including learning sequences… (AAMT, 2006, p. 2, 1.3 Knowledge of student learning of 
mathematics)  

 Further work by the team saw an investigation of Kagan’s (1985) co-operative 
learning model. Moving from a competitive individualistic approach in achieving 
learning goals to a model where students worked together to accomplish shared goals 
required professional coaching. Workshops were co-planned by the team and 
professional learning was delivered by the Teaching Educator. The teachers were 
encouraged to employ the strategies in their classrooms and in the combined double 
lesson. These lessons incorporated a warm up activity, rich tasks and learning 
reflection. Students worked in teams to solve complex real world problems. One such 
double lesson saw students literally running to stations located throughout the College 
in an ‘A-Math-zing Race’ style of learning. The enthusiasm shown by the students 
exemplified the attitudinal shift that was taking place for both students and teachers.  
 Another area of inquiry that the team pursued was student and teacher efficacy in 
mathematics. A survey was developed and administered to gauge a wide range of 
responses including attitude about and relevance of mathematics. The following data 
(Table 2) is a snapshot of some of the survey data of the first student cohort involved in 
the Numeracy Now Project. The data demonstrates that after a year at the school, the 
students were much more likely to appreciate the relationship of mathematics learning 
to everyday life and to its usefulness when they leave school. 

Table 2. Percentage responses from students about their attitudes to mathematics. 

Survey statements Yr 7 2010 
(n=75) 

Yr 8 2011 
(n=75) 

In my maths classes we 
relate what we are learning 
to everyday life. 

68% 91% 

I enjoy giving things a go in 
maths even if I don’t know 
if they will work. 

76% 84% 

The maths I am learning 
will be useful to me when I 
leave the school. 

89% 98% 
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 Another significant learning for the team was influenced by the work of Robinson 
(2007) who asserts that when one sets a goal, it must be ‘resourced strategically’ in 
order to maintain the goal as a priority and to best ensure its success. The team 
resourced the Numeracy Now Project in a number of ways which included: funding of 
a Lead Teacher (Numeracy); prioritising of lesson times and rooms; designated EMU 
specialist rooms; meeting time for professional learning and co-planning; training of 
Specialist EMU Teachers; Leadership training for Lead Teacher, and acquisition of 
resources available for every mathematics teaching space. 
 Sustaining change, including planning for succession and engaging in a continual 
cycle of improvement, has been an ongoing feature of the work of the team. The CEDP’s 
strategic plan, drawing on the work of Robinson (2007), cited in its Theory of Action, 
requires the development of an annual implementation plan. This plan, together with 
the Success Criteria, developed by the CEDP Numeracy Team, has provided the tools 
for the College to engage in frequent reflection and evaluation. 

Emerging changes in mathematical environments 
Hattie’s (2009) Synthesis of over 800 meta-analyses relating to achievement, has also 
informed the work of the classroom teachers at the College. Teachers, knowing that 
they ‘make a difference’, have gained confidence in using the growth points for 
planning for and observing student achievements, become more willing to engage in 
co-teaching and frequently used ‘critical friends’ to provide feedback about their 
teaching. Dr Ann Gervasoni acted as a critical friend and spent some time in the College 
in 2012 engaging in instructional walks (Sharratt & Fullan, 2012) observing teacher 
practices and student engagement. The teachers all commented that they found her 
feedback extremely valuable and practical. As well as changing pedagogical practices 
from teacher centred to student centred learning using open-ended investigations, 
teachers have become more proficient in differentiating the learning for their students. 
They have been aided in this work by regularly using the differentiation planning grid, 
provided by Dr Ann Gervasoni, that included the following components: 

• Brief description of the activity 
• What is the mathematics? 
• What is the growth-point focus? 
• What do you want students to notice? 
• Teaching adaptations—easier/more challenging 
• Teacher questions to probe for understanding. 

 The mathematics teachers have also been developing their ‘on the spot questioning 
techniques’, aiming to assist student articulation of their thought processes, for 
example, “How do you know?”, “Prove it!”, “Explain how you know?”. This powerful 
questioning gives both the teachers and students greater awareness of the students’ 
mathematical knowledge and understanding. It creates feedback for the teacher which 
informs them how to progress the student from their Zone of Proximal Development 
(ZPD) (Vygotsky, 1978).  
 The deep questioning has also assisted the teachers to plan and deliver lessons that 
engage the maximum number of students in the maximum mathematical experiences 
for the maximum time. 
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 One effective practice that emerged from this understanding was the collaboration 
between teachers to co-plan and co-facilitate the double lesson for the Year 7 cohort 
that occurred once a fortnight. The practice was first modelled by the Lead Teacher and 
the CEPD’s assigned Teaching Educator. Through strategic resourcing and mentoring, 
the team ensured practical support and regular feedback for the development of this 
innovation. The traditional classroom environment is now more productive and 
supportive of student learning through the use of word walls, posters and easy student 
access to materials that aid their thinking and learning.  
 Creating opportunities for students to peer teach and to explore rich open-ended 
tasks in small group settings represented another major shift in pedagogical practice. 
Teaching strategies that were particularly useful to assist active student involvement in 
the learning enterprise included: Inside-outside circle, Jigsaw, Graffiti, Think-Pair-
Share and Three Step Interviews. 
 An additional instance of team work that has emerged in the last two years has been 
a closer partnership between the class teacher and EMU Specialist to share information 
about specific student’s learning needs and to plan and co-teach the activities needed to 
accelerate their mathematical progress.  

Working with parents and the wider community 
Parents continue to be acknowledged as one of the key factors in their child’s learning. 
Through the work of the Numeracy Now Project, the team has raised the profile of the 
importance of parents supporting the development of numeracy skills. Since 2010 the 
College has used a variety of opportunities to encourage and support parents to actively 
assist their child’s further numeracy development wherever possible in their daily 
experiences. This has occurred through:  

• advice and information via the college newsletter and the student diary;  
• workshops for parents of EMU students; and  
• the display of concrete materials at parent information evenings, open days and  
• student–parent–teacher conferences. 

Changes in structures for teaching and learning  
Dr Ann Gervasoni encouraged the team to plan for activities and professional learning 
that would act on Recommendations 1 and 12 from the National Numeracy Review 
Report (2008). Specifically these two recommendations made it clear that all teachers, 
no matter what year level or subject specialty, should acquire mathematical pedagogical 
content knowledge. To this end, the team continued with some preliminary work that 
had begun a year earlier in 2009 to enrich all staff members with a fuller understanding 
of their role as teachers of numeracy. Professional learning workshops have been held 
since 2010 with all staff focussing on different aspects of the Numeracy Now Project 
work including: the MAI instrument, the Growth Point Framework, and the MAI data 
and its implications for student learning in all Key Learning Areas (KLAs). 
 The team planned, from the outset, to develop a ‘numeracy across the curriculum’ 
teaching and learning disposition. Professional learning was undertaken to create 
awareness that every teacher is a teacher of numeracy. ‘Numeracy moments’ were 
identified and mapped in all KLA programs by the teachers. This mapping activity 
highlighted a number of numeracy skills common to all KLAs. At a series of workshops 
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members of the mathematics faculty shared with their colleagues the pedagogical 
content knowledge needed to effectively teach numeracy skills commonly used across 
the KLAs. The mathematics teachers have remained connected with their assigned KLA 
expert adviser on mathematics in the curriculum.  

Conclusion 
The team at Delany College believe that the work undertaken to better meet the needs 
of all mathematical learners has implications for many secondary school leaders and 
mathematics teachers. 
 Through the work in implementing the Numeracy Now Project it has become 
evident that the following practices are worthy of consideration by those undertaking 
similar projects. 
1. Devise or adopt a framework of inquiry and knowledge building. 
2. Use research to inform the framework of inquiry. 
3. Build a ‘team’ to lead the project which has expertise and spheres of influence. 
4. Form powerful coalitions with academic partners and Professional Learning 

Communities at system level. 
5. Strategically ‘hook’ the hearts and minds of all stakeholders. 
6. Lead the community of teacher learners with precision to engender confidence in 

undertaking the challenge that change brings. 
7. Resource strategically. 
8. Plan for succession to sustain changes in culture. 
 One indicator of the success of the Numeracy Now Project at the College has been 
the change to teacher practice. One specific practice has been the programming for 
effective mathematics learning and teaching. The teachers are more cognizant of using 
student data, particularly the MAI data each year, to inform adjustments to the 
teaching plan and cycle of learning. As each Year 7 cohort commences, the process 
begins anew by:  
• knowing the individual student’s ZPD by using a diagnostic tool to assess the 

student’s mathematical understandings and to program an appropriate course of 
teaching; 

• knowing, through a structured numeracy lesson, that student reflection and 
response informs teaching adjustments to ensuing learning activities; 

• challenging the learners with problems which create ‘hard thinking’ within a 
student’s ZPD and provide mathematical thinking strategies and prompts to 
allow for multiple hits in understanding new concepts. 

 This new way of working has brought about some profound changes to student 
attitudes and learning behaviours. As two teachers recently commented, 

There are less students opting out of mathematics class work. The frequent use of 
concrete materials and investigations using teamwork has promoted student self-esteem, 
encouraged risk taking and enjoyment of the learning. 

It has been a truly exciting journey and my rewards are received every day on the smiling 
faces of the students, keen and eager to come and learn—that magical moment when the 
light goes on. 

 Students, when asked their opinion about the way in which they are learning 
mathematics, made the following comments. 
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I like our lessons very much because we are learning things and figuring out what to do. I 
now have more ways of doing maths. In class now, I am more confident to try a question. 

My maths lessons have helped me get more strategies to solve problems. I know a lot 
more and I’m now not afraid to answer questions. 

I feel confident knowing that I’m not dumb any more. I am smart. 

I like my maths lessons because I’ve learnt to do things I couldn’t do before. 

I didn’t like maths in primary school because I couldn’t do it. I love maths now. I hate 
missing a class.  

 These comments demonstrate the positive impact of the Numeracy Now Project for 
students and teachers. The College project leadership team, together with the 
mathematics faculty, believe that the essence of their work is ‘launching confident 
numerate learners’. We are well on the way! 

Note 
A copy of the extended Launching Confident Numerate Learners paper is accessible on 
the Delany College website www.delanygranville.catholic.edu.au  

References 
Australian Association of Mathematics Teachers (2006). Standards for excellence in teaching 

Mathematics in Australian schools. Retrieved from http://www.aamt.edu.au. 

Board of Studies NSW (2012). Mathematics K–10 syllabus, volumes 1 and 2. Retrieved from 
http://syllabus.bos.nsw.edu.au/mathematics/mathematics-k10 

CEPD. (2013). Theory of action. Retrieved from http://www.ceo.parra.catholic.edu.au. 

Clarke, B. A., Sullivan, P. & McDonough, A. (2002). Measuring and describing learning: The Early 
Numeracy Research Project. In A. Cockburn & E. Nardi (Eds), PME 26: Proceedings of the 26th annual 
conference (pp. 181–185). Norwich, UK: PME. 

Curriculum Corporation (2008). Melbourne Declaration on Educational Goals for Young Australians. 
Ministerial Council on Education, Employment, Training and Youth Affairs (MCEETYA). Retrieved 
from 
http://www.mceecdya.edu.au/verve/_resources/National_Declaration_on_the_Educational_Goals_f
or_Young_Australians.pdf  

Gervasoni, A. (2002). Intervention and the extending mathematical understanding program: Insights from 
the early numeracy research project and beyond. In C. Vale, J. Roumeliotis & J Horwood (Eds), 
Valuing maths in society (pp. 166–181). Brunswick: Mathematical Association of Victoria. 

Gervasoni, A., Parish, L., Hadden, T., Livesey, C., Bevan, K., Croswell, M. & Turkenburg, K. (2012). The 
progress of grade 1 students who participated in an extending mathematical understanding 
intervention program. In J. Dindyal, L. P. Cheng & S. F. Ng (Eds), Mathematics education: Expanding 
horizons (Proceedings of the 35th annual conference of the Mathematics Education Research Group of 
Australasia, pp. 306–313). Singapore: MERGA Inc. 

Hargraves, A. & Fink, D. (2006). Sustainable leadership. San Francisco, CA: Jossey-Bass. 

Hattie, J. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. 
London: Routledge.  

Human Capital Working Group, Council of Australian Governments (2008). National numeracy review 
Report. Canberra: Author. 

Robinson, V. (2007). The impact of leadership on student outcomes: Making sense of the evidence. In The 
leadership challenge: Improving learning in schools. Melbourne: ACER . 

Sharratt, L. & Fullan, M. (2012). Putting faces on the data. Victoria: Hawker Brownlow Education.  

Timperley, H. & Parr, J. (2009). Chain of influence from policy to practice in the New Zealand literacy 
strategy. Research Papers in Education, 24(2), 135–154. 

Timperley, H., Wilson, A., Barrar, H. & Fung, I. (2008). Teacher professional learnng and development: A 
best evidence iteration. Retrieved from http://educationcounts.edcentre.govt.na/goto/BES 

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (pp. 79–91). 
Cambridge, MA: Harvard University Press. 



 

MATHEMATICS: LAUNCHING FUTURES • © AAMT 2013 
157 

DATA AND MEASUREMENT IN YEAR 4 OF THE 
AUSTRALIAN CURRICULUM: MATHEMATICS 

JANE WATSON 

University of Tasmania 

jane.watson@utas.edu.au 

LYN ENGLISH 

Queensland University of Technology 

l.english@qut.edu.au 

 
The activities introduced here were used in association with a research project in 
four Year 4 classrooms and are suggested as a motivating way to address several 
criteria for Measurement and Data in the Australian Curriculum: Mathematics. 
The activities involve measuring the arm span of one student in a class many times 
and then of all students once. 

Introduction 
The Australian Curriculum: Mathematics (Australian Curriculum, Assessment, and 
Reporting Authority [ACARA], 2013a) has had a mixed reception from mathematics 
educators (e.g., Atweh, Goos, Jorgensen & Siemon, 2012) and the debate will lead to 
continuing improvement and relevance over time. There are places in the curriculum, 
however, whether planned or not, where valuable links can be made that offer great 
opportunity for classroom activities. One of these appears in Year 4 in the strands of 
Measurement and Data. The relevant descriptors are presented in Table 1. 

Table 1. Year 4 content descriptors, Australian Curriculum: Mathematics (ACARA, 2013a). 

Measurement and Geometry 
Using units of measurement 

Use scaled instruments to measure and compare lengths, masses, capacities and temperatures 
(ACMMG084) 

Statistics and Probability 

Data representation and interpretation 
Select and trial methods for data collection, including survey questions and recording sheets 
(ACMSP095) 

Construct suitable data displays, with and without the use of digital technologies, from given 
or collected data. Include tables, column graphs and picture graphs where one picture can 
represent many data values (ACMSP096) 

Evaluate the effectiveness of different displays in illustrating data features including 
variability (ACMSP097) 

 The final word in Table 1 is the key connecting concept across these descriptors. 
Variation is the concept underlying all of statistics (e.g., Moore, 1990; Watson, 2006) 
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and research has suggested that students develop an appreciation for variation before 
an appreciation of expectation, where expectation is related to “expected values” such 
as probabilities or averages (Watson, 2005). These two concepts form the foundation of 
informal inference, which although not explicitly stated in the curriculum, must be the 
aim of the “interpretation” part of “Data representation and interpretation.” Makar and 
Rubin (2009) define informal inference in terms of using data as evidence, generalising 
beyond those data, and acknowledging uncertainty in the generalisation. It is precisely 
the variation in the data that leads to the uncertainty in the expectation expressed in 
the generalisation. 
 Returning to the descriptors in Table 1, in measuring length students may have an 
expectation that their own measurement is precise and accurate, but when several 
students measured the same object, they saw that there is variation in the 
measurements. Variation will also have occurred if different students use different tools 
to measure the length of an object, linking to the second descriptor in Table 1 about 
methods of data collection. Variation is inherent in both the different methods of data 
collection and in the data collected. As intimated in the fourth descriptor, the suitable 
data displays from the third descriptor will have different qualities in displaying the 
variation in the data collected. 
 The activities described here, based on measuring arm span length (Watson & 
Wright, 2008), were the basis of a research project that will involve students in Years 4 
to 6 over three years. Students were given workbooks (the questions from which are 
condensed in the Appendix) and worked in groups of two or three. The teachers were 
provided with extensive teaching notes, including instructions for carrying out and 
recording the measurements on a whiteboard in a list and with yellow stickies in a 
stacked “dot” plot. Students produced hand-drawn plots and later used the TinkerPlots 
software (Konold & Miller, 2011) for creating other plots of the data. The researchers 
were present observing and occasionally answering questions. The students were 
sometimes in their classroom and sometimes in a computer laboratory; the researchers 
fit in and were not considered an intrusion. 

The lessons and student outcomes 
The first lesson began with a discussion on how accurately the class could measure 
length, reviewing the units and tools they could use. The question was asked. “If we all 
measure the same object will we get the same answer for its length? Why or why not?” 
The scene was then set for measuring the arm span of one student, posing the question 
of everyone getting the same value, and being able to make a “best guess” (i.e., expected 
value) of the person’s arm span. Students were given a choice of measuring tools, 
including rulers, tape measures, string, and metre sticks. The instructions in the 
workbook assisted students in recording the data on the whiteboard and in their 
workbooks; students answered questions Q3, Q4, and Q5 in the workbook (see 
Appendix) while the measurements were being made and recorded. One of the stacked 
dot plots of class data is presented in Figure 1. 
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Figure 1. Stacked dot plot of one class’s data. 

 In answering Q3, “Were all of the measurements the same? Why or why not?”, 
students were well aware of the reasons for variation. Most answers focussed on the 
measuring tools or whether the measuring was carried out accurately. 

No, because the class was using different measuring materials. 

No, because some people didn’t start at zero. 

No, because [student] could have moved her arms. 

No, because the units of measurement were different. 

Other responses, however, were more vague. 

No, because everybody can get a different answer. 

 In answering Q4 “Were you surprised at some of the values? Which ones? Why?” 
there was variation across the classes because of the different data collected but well 
over half of the students identified an outlier, whereas others noticed the range or lack 
of variation. 

Yes, [student] did 99 cm and everybody else did over 110 cm. 

Yes, 146 and 138 because they were the biggest and smallest number. 

I wasn’t surprised because the numbers are around the same. 

 Q5 was more comprehensive, asking for a summary of the accuracy of the 
measurements, a “best guess” of the arm span, and the student’s confidence in the 
guess. Comments on accuracy mirrored some of the reasons given for Q3. Examples 
presented here hence focus on the reasons for the expectation associated with the “best 
guess” of the person’s arm span, which varied considerably. 

I think it is 141 cm because there are more 141 cm in the measurements. 

I think that our guess was pretty good because we guessed 142 cm and it was in the 
middle of all of the guesses. 

I think 141 cm … is the right size for [student]. 

 When asked to create a representation of the data in a graph, picture or plot, the 
results were generally of two types. Figure 2 shows three representations that kept 
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track of the values recorded for the measurements. On the left is an alphabetical list of 
the measurers and their measurements. In the centre is a horizontal line plot of 
unordered measurements with scale from 138 cm and on the right is a vertical value 
plot with the scale beginning at 10 cm. 

  

 

Figure 2. Three examples of representations of the values measured. 

 Figure 3 contains three representations of the frequency type. On the left is an 
unordered tally list; in the centre, an unordered frequency bar chart; and on the right, a 
frequency pictograph. The representations in Figures 2 and 3 illustrate the tremendous 
variation in tables and plots that are created by students when they are given a blank 
page rather than a labelled grid to fill in. 

   

Figure 3. Three examples of representations of the frequencies of values measured. 

 For Q6, students were asked to write a summary of their representations, thinking 
about variation. Only a few students missed the point and talked about colour or 
people. The display of appreciation of variation itself revealed variation, from little 
recognition to quite meaningful suggestions. 
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I used a bar chart to show [student’s] arm span. 

My graph is counting in centimetres. It has the names of everyone on the horizontal 
axis and the measurement on the vertical axis. 

It tells you from a number to a number e.g., 126 to 129 and how many people chose 
between the two numbers. 

Bar graph and 141 is most likely to be the correct arm span. 

I chose this graph because it shows the different variations of cm for one person’s arm 
span. It also shows how many people got the same measurement. 

I did a range of measurements to see which one is most popular. 

 Students then entered the data into TinkerPlots to consider other possible 
representations of the measurements. It was their first experience with data in 
TinkerPlots except for an introductory session in the computer laboratory a few weeks 
earlier. Students were keen to identify the people with the values they had measured 
and in this first exposure to the software unconventional representations were 
sometimes created. Two of the TinkerPlots graphs are shown in Figure 4, again 
representing measured values or frequencies of measured values. 

 
 

Figure 4. Two examples of TinkerPlots representations of measurements for one student. 

 Moving to the second lesson where students measured the arm spans of all members 
of their class once, the questions involved the accuracy of measurement and the class 
data were entered directly into TinkerPlots rather than the students creating their own 
representations first on paper. Following class discussion it was expected by the 
teachers and researchers that the issue of having many measurements to make a “best 
guess” of arm span, as in the first lesson, versus having only one measurement in the 
second lesson, would motivate students to question the accuracy of the single values for 
each student. In fact the circumstances of the lessons, where to speed the process, in 
most classes the researchers helped measure the arm spans of students along a tape 
measure attached to a wall, meant other salient features captured the attention of 
students. When answering Q4 on accuracy, most suggestions were of a practical rather 
than theoretical nature. 

More accurate because we were putting the measuring tape on the wall. 

They will be [more accurate] because the adults did it. 
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Yes. I think they will be because now we have had practice at measuring we might be 
more accurate than last time. 

Only one response appeared to recognise the issue of repeated measurements. 

I think [student’s] arm span measurements were more accurate than ours because we 
were all measuring the same person. 

 For the final part of the activity students were asked to display the data from 
measuring the arm spans of the entire class. Because the data were entered into the 
same file that contained the measurements on the single student, students could be 
asked to describe differences between the plots for the two data sets. Two of the final 
plots and explanations are shown in Figure 5. 

 
 

Figure 5. Two examples of summaries from the measurement activities. 

 For students who had completed their analyses, they were encouraged to consider 
other questions that might arise from the data collected, such as the possibility of 
gender difference in the arm span lengths. Figure 6 shows two examples. On the left is a 
plot showing the gender difference in one class and on the right is a plot showing the 
variation in measurements of a single student for the different tools used in another 
class. The foundation concept of variation was stressed throughout discussions with 
students and although not all written responses reflected it (43% of students were ESL 
students), the teachers expressed complete satisfaction with the outcomes. 

  

Figure 6. Two examples of extensions to the measurement activity. 
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Discussion 
The activities described here have demonstrated the feasibility of linking Measurement 
and Data at Year 4. Without a context, statistics are meaningless (Rao, 1975) and 
measurement provides a realistic and motivating context within the Australian 
Curriculum: Mathematics. The activities also fulfil the detail of constructing “data 
displays, with and without the use of digital technologies” within Data Representation 
and Interpretation and reinforce the general capability of ICT across the curriculum 
(ACARA, 2013b). In particular, Investigating with ICT, Creating with ICT, and 
Communicating with ICT (p. 53) are illustrated with these activities. Further, there is 
potential for developing all four elements of the general capability of Critical and 
Creative Thinking: Inquiring, Generating ideas, possibilities and actions, Reflecting on 
thinking and processes, and Analysing, synthesising, and evaluating reasoning and 
procedures (p. 72). 
 Turning to the proficiency strands of the mathematics curriculum, these activities 
clearly contributed to understanding in building “a robust knowledge of adaptable and 
transferrable mathematical concepts” (ACARA, 2013a, p. 5), particularly in relation to 
linear measurement and variation as a foundation for statistical investigations. 
Variation must be one of the most transferable concepts in all of mathematics! Fluency 
in terms of “choosing appropriate procedures [and] carrying out procedures flexibly, 
accurately, efficiently and appropriately” (p. 5) was observed to develop during the 
lessons in the new techniques encountered by the students. Students also were 
developing “the ability to make choices, interpret, formulate, model and investigate 
problem situations” (p. 5) as they worked through the activities presented to them. 
Finally most students displayed progress in reasoning as they used logical thought 
patterns in the measurement context to infer, justify and generalise, explaining their 
outcomes (p. 5). 
 For those who would meet the content, proficiency and capability standards of the 
new curriculum, these activities provide an excellent starting point, as well as a 
foundation for informal inference in later years. Although not all students performed at 
the level displayed in the figures, all students were engaged, discussed difference and 
variation with members of their groups and the teacher, and could answer casual 
questions posed by the researchers. 
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Appendix: Student Workbook (Condensed): 
Measuring a person’s arm span 
Name: [Other information] 
 
How easy is it to get an accurate measurement of something? Today, we will be 
discussing methods of measuring the arm span of one person in your class and 
everyone will have a chance to do the measuring. 
 
Q1. Explain here the method you and your partner have decided to use: 
 
Q2. Each person in your group is to record below their name and the measurement 

they took. 
 
Name: ____________________________ Arm span (cm): ____________ 
Name: ____________________________ Arm span (cm): ____________ 
Name: ____________________________ Arm span (cm): ____________ 
 
Once you have your measurement, also record the information on the whiteboard when 
instructed by your teacher. [Table provided with names of students to record 
measurements.] 
 
Q3. Were all of the values the same?  
 Why or why not?  

Which was the largest? 
Which was the smallest? 

 
Q4. Were you surprised at some of the values? Which ones? Why? 
 
Q5. Write a summary of how accurate you think the measurements in the table are. 

What is your “best guess” of the arm span of the person the class measured? How 
confident are you of this value? 

 
Use the next page to create a graph or plot or picture to represent the values in the 
table. [Blank page provided.] 
 
Q6. Write a summary statement about what your representation shows about the 

measurements your class made of the arm span of the person you measured. 
Think about the variation that is seen in your plot or picture. 
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Q7. After looking at the other representations presented in class, which do you think 
is the best way to tell the story of the person’s arm span? Why? 

 
Q8. What is your new “best guess” for the arm span of the person the class measured? 

Explain why you chose this value. 
 
Q9. [Instructions given for entering class data into TinkerPlots, which students 

complete and create plots.] Has your “best guess” changed for the person’s actual 
arm span? If so, explain why? 

 
Q10. After looking at the other TinkerPlots files created by your classmates, write a 

summary below of which representation you think shows the variation in the 
measurements the best. 

Measuring our arm span 
 
Last lesson we measured the arm span of a single person. This lesson we are going to 
measure and plot the arm span of all members of the class. 
 
Q1. Describe the method your class have decided to use: 
 
Q2. All people in your group are to record below their names and their arm span 

measurements. [space provided] 
 
Once you have your measurement, also record the information on the whiteboard when 
instructed by your teacher. 
 
Q3. Do you think all the values will be the same? 
 Why/why not? 
 
Q4. How accurate do you expect your results to be compared to our last lesson? 
 
[Table provided with names of students to record measurements.] 
 
Q5. In your groups, enter the data into the TinkerPlots file.  
 You will need to: 

• Create Data Cards and enter their data 
• Create a plot that best describes the data set and tells the story 
• Create a text box and write: 

i. A summary statement about what your plot shows and 
ii. At least two sentences that describe the differences between this plot and 

the earlier one.  
 
Extension question: Do boys have longer arm spans or do girls? How might this be 
explored? Can you make a plot showing the difference between boys’ and girls’ arm 
spans? 
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Students who begin school with different everyday language to that used in the 
curriculum and in the school do not have the advantage of their early mathematics 
lessons building on the language and concepts which they use at home. Some of the 
discord between the sequencing of location in Early Years mathematics curricula 
and the understandings of Indigenous language speaking students can be explained 
using a typology of spatial frames of reference from cognitive linguistics. It shows 
how developmental progressions in early mathematics can contain culturally and 
linguistically specific assumptions which may be implicit in curricula and teaching 
practices. 

Introduction 
The sequence of locational language and concepts in Australian mathematics curricula 
generally begins with ‘everyday language’ and progresses to more technical or abstract 
concepts. The mathematics section of the Northern Territory Curriculum Framework 
(NTCF) is explicitly informed by the SOLO taxonomy and the Van Hiele levels 
(Northern Territory Department of Education, 2009). A close analysis of the 
sequencing of the location element of the NTCF also showed a relationship between its 
sequence and the stages of spatial development described by Piaget and Inhelder 
(1948/1956), hereafter referred to as the Piagetian spatial stages, although there is no 
reference to Piaget in the NTCF.  
 The sequence of spatial language in the NTCF also parallels the usual order of 
acquisition of spatial language in Indo-European languages, a language family which 
includes most European languages such English and also the Indo-Iranian languages 
such as Hindi and Persian (Johnston & Slobin, 1979; Levinson, 2003). While this 
sequence appears ‘natural’ for speakers of these Indo-European languages, spatial 
language and thinking is not acquired in the same order or even in the same categories 
in all languages (Levinson, 2003). A semantic typology of spatial frames of reference 
developed by cognitive linguists (Pederson et al., 1998) is proving useful in 
understanding this cross-linguistic variation because it provides a way to talk about 
these differences without using a universalising hierarchy.  
 The Australian Curriculum Mathematics 4.1 (Australian Curriculum Assessment 
and Reporting Authority [ACARA], 2013) is currently replacing state and territory 



EDMONDS-WATHEN 

MATHEMATICS: LAUNCHING FUTURES 
170 

based curricula across the nation. As part of its more streamlined approach, it describes 
in less detail than the NTCF the specific language that might be used at each year level. 
From a cross-linguistic perspective this could be advantageous in that varied linguistic 
sequences could be used. However, it is likely that most teachers will continue to use a 
sequence that seems ‘natural’ to them because is concords with the normal sequence of 
acquisition in their own languages. Mathematics textbooks, workbooks and other 
support material are also likely to continue to reflect this sequence, which is an 
appropriate sequence for many children. It is important for teachers of students from 
non-Indo-European language backgrounds to understand both that the everyday 
language of space of these students may differ from that assumed in the mathematics 
curriculum and that the order of acquisition may vary. For children whose linguistic 
backgrounds are from some different language families, especially children who are 
first language speakers of Indigenous Australian languages, this sequence may not be 
appropriate. As well as describing how these sequences may vary, this paper makes 
suggestions for how teachers might teach spatial language in a more linguistically 
appropriate manner for these students.  

Piagetian spatial stages 
There are three main Piagetian spatial stages: topological, projective and Euclidean 
(Piaget & Inhelder, 1948/1956). These stages are believed to develop through the child’s 
perceptual experiences. The topological stage is egocentric and includes sensitivity to 
proximity, separation, order, enclosure and continuity; it is “purely internal to the 
particular figure whose intrinsic properties it expresses” (p. 153). In the projective 
stage, points of view begin to be taken into account and relationships “presume the 
inter-co-ordination of objects separated in space” (p. 154). This includes the concept of 
the straight line and the visual effects of perspective. Finally, in the Euclidean stage, 
space is conceived abstractly as a ‘container’ for the objects within it, and is organised 
by parallel and orthogonal straight lines. These stages are shown in Table 1. 

Table 1. Piagetian stages of spatial development. 

Piagetian 
stage Ages Qualities Descriptor 

topological 2–7 years 
proximity, separation, order,  
enclosure, continuity 

egocentric 

projective 7–12 years straight lines, perspective points of view 

Euclidean 12+ years parallel and orthogonal axes abstract 

 
 Piaget and Inhelder (1948/1956) based their theory on studies of European children. 
There is a resemblance between the Piagetian stages and the order of acquisition of 
spatial language in European languages (Brown & Levinson, 2000). Topological 
concepts such as ‘in’, ‘at’ and ‘on’ are acquired early, followed by projective concepts 
such as ‘in front of’, ‘in back of’, ‘to the left of’ and ‘to the right of’ and finally Euclidean 
concepts such as the geocentric terms ‘north’, ‘south’, ‘east’ and ‘west’. Note that there 
are both topological and projective senses of ‘behind’ and ‘in front’, with the projective 
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sense acquired later than the topological (Johnston & Slobin, 1979). Brown and 
Levinson (2000) comment: 

Because of this correspondence between acquisition order and the predicted Piagetian 
order, it is generally held that the order of language acquisition is driven by conceptual 
development. In other words, the presumption is that language does not facilitate or 
influence the course of conceptual development by depends on it. (p.173, emphasis in 
original) 

 The applicability of these Piagetian stages to the mathematical development of 
children of non-European cultures has been extensively questioned. Studies using 
Piagetian theory have found differences between Indigenous Australian children and 
the European children of Piaget’s study (Dasen, 1973; Seagrim & Lendon, 1980). Speakers 
of Warlpiri, spoken in the Central Australian desert begin to understand cardinal 
directions such ‘north’, ‘south’, ‘east’ and ‘west’ within the first few years of life 
(Laughren, 1978). In Tenejapan Tzeltal, a Mayan language spoken in Mexico, projective 
terms are not used at all, and geocentric (Euclidean) terms are acquired at same age or 
possibly before the topological (Brown & Levinson, 2000). Because space as conceived by 
the Navajo is developed and structured differently to that described by Piaget, “the 
educational procedures that would be appropriate and satisfactory of the teaching if 
spatial notions in Navajo cultural settings cannot take the Western Hierarchical spatial 
structure for granted” (Pinxten, van Dooren & Harvey, 1983, p. 161). 
 The languages which children hear and learn as they mature affect the course of 
their conceptual development with respect to space. These examples suggest that to 
some extent the order of language acquisition drives conceptual development of space 
and that this is culturally and linguistically specific.  

Early years curriculum stages  
The same sequence of the Piagetian stages and the order of acquisition of spatial 
language in European languages can be observed in mathematics curricula. In the 
NTCF (NTDET, 2009), topological relations can be seen at Key Growth Point 2 (KGP2) 
(preschool - Foundation Year) such as ‘in’, ‘on top’ ‘beneath’ and ‘behind’ and ‘in front’. 
Key Growth Point 3 (KGP3) (Foundation - Year 1) introduces projective relations 
requiring descriptions of positions of self and objects in relation to other objects and in 
Band 1 (approximately Year 2) ‘left’ and ‘right’ are used along with grids and 
coordinates. By Band 2 (approximately Year 4), Euclidean relations are used such as 
the more abstract cardinal directions. A mapping of the Piagetian stages against the 
NTCF levels is shown in Table 2. 
 The Australian Curriculum Mathematics (ACARA, 2013) is less specific about 
terminology. However, it still progresses from topological concepts at Foundations level 
such as ‘near’ and ‘next to’ (ACMMG010), through to Euclidean concepts such as the 
use of grids in Year 5 (ACMMG113). It is harder to identify the projective stage, but is 
included in Year 1’s ‘clockwise’ and ‘anticlockwise’ (ACMMG023) and Year 2’s ‘relative 
positions’ (ACMMG044).  
 These curriculum sequences concord with how English speakers are taught, acquire 
and use the language of location. However, this sequence is not how speakers of many 
Australian Indigenous languages acquire and use spatial language. For Warlpiri 
children, with cardinal directions part of their everyday language before school entry 
age, ‘left’ and ‘right’ may never be everyday language (Laughren, 1978).  



EDMONDS-WATHEN 

MATHEMATICS: LAUNCHING FUTURES 
172 

Table 2. Piagetian spatial stages, NTCF levels and indicative vocabulary. 

Piagetian 
stage Descriptor NTCF level English 

vocabulary 

topological scene internal KGP2 – KGP3 
‘in’, ‘on top’, 
‘beneath’, ‘behind’,  
‘in front’ 

projective 
person’s point of 
view 

Band 1 ‘left’, ‘right’ 

Euclidean 
space as 
container, abstract Band 2 

‘north’, ‘south’, ‘east’, 
‘west’ 

 
 Variation in the development of spatial concepts and language is significant in cross- 
or inter-cultural situations, in terms of whether the mathematics curriculum follows 
the same or a different sequence of spatial concept acquisition as the child. 
Investigating the sequence of acquisition of spatial concepts in a particular language 
could help determine whether the sequence of the mathematics curriculum is suitable 
for speakers of that language.  

Frames of reference 
The terminology of spatial frame of reference provides another way to describe 
variation in spatial languages and in acquisition of spatial language. Spatial frames of 
reference describe where things are located with respect to each other. They essentially 
involve coordinate systems which provide angular information about location 
(Levinson, 2003). Levinson (2003) describes three frames of reference: intrinsic, 
relative and absolute. Definitions of the frames of reference make use of the distinction 
between figure and ground, where the figure is the topic of the locational description 
and the ground is the reference object with respect to which the figure is located 
(Talmy, 1983). 

Intrinsic  

In the intrinsic frame of reference, descriptions are scene internal and the figure is 
located with respect to a feature of the ground, for example, “the pen is beside the cup”. 
Key terms in English are ‘front’, ‘back’ and ‘sides’. The intrinsic frame of reference is 
generally the first acquired and seems to be present in all languages (Johnson & Slobin, 
1979). It evolves out of and can form a continuum with the topological part of spatial 
language (Levinson, 2003). Mopan, a Mayan language spoken in Belize and Guatemala, 
appears to only have this frame of reference (Danziger, 1996). 

Relative 

In the relative frame of reference, the location of the figure is described by relating the 
point of view and body of the speaker to the ground, for example, “the pen is to the left 
of the cup”. Key English terms are ‘in front of’, ‘behind’, ‘to the left of’ and ‘to the right 
of’, where these are from the speaker’s perspective. Terminology used in this frame of 
reference is often derived from the intrinsic frame of reference. While the relative frame 
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of reference is used extensively in European languages, there are other languages which 
do not use it at all (Levinson, 2003).  

Absolute 

In the absolute frame of reference, the location of the figure is described in relation to a 
fixed direction or landmark, for example, “the pen is to the north of the cup”. The 
cardinal directions such as ‘north, ‘south’ ‘east’ and ‘west’ are the key terms in English. 
Other types of absolute direction systems have evolved in response to the environment, 
such as using direction of river drainage (Schultze-Berndt, 2006), or the use of an 
inland/seaward axis in coastal and island languages such as Iwaidja (Edmonds-
Wathen, 2011).  

Acquiring frames of reference  

The order of acquisition of the frames of reference in Indo-European languages 
corresponds to the order of acquisition of the Piagetian stages for the European child: 
firstly the intrinsic, followed by the relative, with the absolute acquired last (Brown & 
Levinson, 2000; Levinson, 2003). Table 3 shows how the frames of reference can be 
mapped against the Piagetian spatial stages and the NTCF. 

Table 3. Frames of reference, Piagetian spatial stages and NTCF level. 

Frame of 
reference 

Piagetian 
stage Qualities NTCF level English 

vocabulary 

Intrinsic topological scene internal KGP 2 – KGP 3 
‘in’, ‘on top’, 
‘beneath’, ‘behind’,  
‘in front’ 

Relative projective  
person’s 
point of view  

KGP 3 – Band 1 ‘left’, ‘right’ 

Absolute Euclidean 
space as 
container, 
abstract 

Band 2 
‘north’, ‘south’, ‘east’, 
‘west’ 

 
 In these terms, Warlpiri children acquire the absolute frame of reference at an early 
age, being receptive to it before the age of two, but Warlpiri does not use the relative 
frame of reference (Laughren, 1978). This appears to be widespread (Schultze-Berndt, 
2006) although not universal (Edmonds-Wathen, 2011) among indigenous Australian 
languages. The frames of reference are not inherently sequential like the Piagetian 
spatial stages. Spatial frame of reference thus provides us with a non-hierarchical way 
to compare how different languages describe spatial location.  

Implications and conclusion 
As the Australian Curriculum: Mathematics is introduced across Australia, it is timely 
to examine possible assumptions underlying our practice and take the opportunity to 
make our teaching more suitable for our students. Spatial thinking and spatial language 
are acquired developmentally and the order of acquisition varies cross-culturally and 
cross-linguistically. The order of acquisition of spatial language in Indo-European 
languages appears to have influenced both the Piagetian spatial stages and the 
sequencing of school mathematics curricula. However, students with different everyday 
language to that used in the curriculum and for instruction do not have the advantage 
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of their early mathematics lessons building on the language and concepts which they 
use at home. The benefit of using the frames of reference typology over the Piagetian 
stages to describe some of this variation is that the frames of reference are not 
hierarchical and the approach does not assume all languages and people use all three 
frames of reference. 
 Evidence from languages in which the absolute frame of reference is the 
predominant frame of reference used shows that children can acquire the absolute at a 
much earlier age than it appears in Australian mathematics curricula (Brown & 
Levinson, 2000; Laughren, 1978). All mathematics teachers, particularly teachers of 
students who speak these absolute focussed languages, could introduce and use English 
cardinal terms in the early years in direction and location associated activities. This is 
recognised in one of the Australian Curriculum Mathematics Year 2 work samples in 
which the task is to describe a bike track on a grid (ACARA, 2013). The student uses 
both relative terminology—“Go left”—and absolute—“Keep going south, then turn 
round, go north”.  
 The absolute frame of reference can be used to refer to the location of familiar object 
in the environment such as school buildings. The understanding that east and west can 
be determined from sunrise and sunset is an environmentally salient way to start to 
learn these directions. Some cities and towns also have street grids aligned to the 
cardinal directions which can be used. 
 Another suggestion is to use the absolute frame of reference to facilitate the learning 
of left and right, as a kinaesthetic mnemonic. Once absolute directions have been 
learnt, one faces towards a direction such as east (facing towards the direction where 
the sun rises in the morning). Left is then the side that is towards the north and right is 
the side facing towards the south. The directions can be reinforced using locally salient 
cues. To begin with, one assumes the actual facing direction to recall left and right, and 
then eventually uses a mental representation of facing in the direction.  
 These are preliminary suggestions but they are informed by a cognitive linguistic 
framework of demonstrated applicability in diverse contexts. It is important to take the 
opportunity offered by a new curriculum to examine preconceptions we may hold of 
‘natural’ sequences of mathematical learning and where relevant adapt our teaching to 
make it more suitable for particular cohorts of students. An appreciation of diverse 
learning sequences can also open up new approaches to the learning capabilities of all 
our students.  
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This paper considers some of the ways in which a computer algebra system (CAS) 
such as Mathematica could be used to further study of prime numbers in the Year 
6–12 mathematics curriculum. 

Introduction 
The study of prime numbers is typically part of the school mathematics curriculum in 
the upper primary and early secondary years. For example, from the Australian 
Curriculum: Mathematics Foundation – Year 10: 

Year 5 
Identify and describe factors and multiples of whole numbers and use them to solve 
problems (ACMNA098) 
Year 6 
Identify and describe properties of prime, composite, square and triangular numbers 
(ACMNA122) 
Year 7 
Investigate index notation and represent whole numbers as products of powers of prime 
numbers (ACMNA149) 
(ACARA http://www.australiancurriculum.edu.au/Mathematics/Curriculum/F-10). 

 Related content usually covers factors of natural numbers, classification of types of 
these numbers, their representations and the fundamental theorem of arithmetic 
(http://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic). In later 
secondary years students may also study prime numbers as part of enrichment and 
extension of the curriculum in the area of number theory, or as a component of school-
based assessment, for example exploration of Gaussian integers as part of work on 
complex numbers in advanced mathematics.  
 Applications involving prime numbers, such as the RSA cryptosystem 
(http://en.wikipedia.org/wiki/RSA_(algorithm); 
http://www.mathaware.org/mam/06/Kaliski.pdf) have also had occasional popularity, 
principally as mathematical investigations in the senior years as they also involve 
modulo arithmetic and other aspects of number theory. 
 While many students will have seen application of the Sieve or Eratosthenes 
(http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes) (Figure 1) to the numbers from 
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1 to 100 they usually do not get to work with large prime numbers (ask any student 
what is the largest prime number that they know for sure) or indeed, large lists of 
prime numbers. This is certainly likely to be the case when the relevant computations 
for prime number identification are carried out by hand or using a scientific calculator. 
The Sieve of Eratosthenes is efficient for finding ‘small’ prime numbers. For a given 
natural number, n, the sieve tests potential divisors up to √n. 

 

Figure 1. Sieve of Eratosthenes from 1 to 100. 

 As well as powerful numerical computation capability CAS such as Mathematica 
have specific number theoretic functionality that can be used to support a more 
detailed study of prime numbers. This paper explores some of these possibilities.  
There are a range of related Demonstrations (dynamic pre-developed Mathematica 
files) available from Wolfram Research that use this functionality to illustrate aspects of 
mathematics such as divisibility networks, the Sieve or Eratosthenes, prime 
factorisation or the distribution of primes (see: http://demonstrations.wolfram.com).  

Some background 
A natural number is an element of the set N = {1, 2, 3 …}. In the following discussion 
the word ‘number’ is taken to refer to a natural number. The set of prime numbers 
sometimes designated P, is a proper subset of N. A number is said to be a prime if it has 
exactly two distinct factors, 1 and itself, while a number with more than two distinct 
factors is said to be composite. A special type of composite number is a factorial where 
‘n factorial’ is n! = n × (n – 1) × (n – 2) × (n – 3) × … × 3 × 2 × 1, for example 5! = 120. 
 The number 7 is prime as its only factors are 1 and 7 (exactly two distinct factors); 
while 18 is composite as it has six distinct factors {1, 2, 3, 6, 9, 18}. The number 1 is a 
special case—it is neither prime nor composite as it has only one factor—itself (this is 
the only number that is neither prime nor composite). Prime numbers are important in 
mathematics because they can be used to build up (compose) and uniquely represent 
(up to order) other numbers using only multiplication, for example 2013 = 3 × 11 × 61. 
 It is not immediately clear whether an arbitrary number such as 1 234 567 is prime 
or not. In February 2013 a new largest known prime number 257 885 161 – 1 was 
announced. This and the last few previous ‘largest’ prime numbers are a particular type 
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of prime number called a Mersenne prime 
(http://en.wikipedia.org/wiki/Mersenne_prime).  
 Some interesting related mathematical questions are: How can one identify whether 
a number is prime or not? Is there a rule for generating all prime numbers? How are 
prime numbers used to build up composite numbers? How many prime numbers are 
there anyway? Are prime numbers easy to find? How are they distributed in N? 

Using Mathematica functionality 
Mathematica has several built in number functions related to prime numbers and 
factors. 
Is n prime? 

PrimeQ[n]tests whether n is prime or not, for example: 

 

It is possible to use this to select all the primes from within a given set: 

 

And also obtain the composites: 
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What is the nth prime? 

Prime[n] gives the nth prime number, for example: 

 

This can be used to generate a list of the first n primes, for example: 

 

And also to investigate the distribution of primes, as illustrated in Figure 2: 

 

Figure 2. The graph of the nth prime in terms of n for n = 1 to 50. 
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How many primes are there in a given interval?  

PrimePi[n] gives the number of primes less than or equal to n, for example: 

 

  PrimePi[n] is approximated by n/loge(n), for example, if n = 100 then 
100/loge(100) ≈ 22, and can also be used to investigate the distribution of primes, for 

example http://demonstrations.wolfram.com/DistributionOfPrimes. PrimePi[n]can 
also be used to find numbers of primes in an interval, for example:  

 

 As the size of prime numbers increases so does the gap between consecutive primes. 
For n > 1 it is known that there is at least one prime between n and 2n. For n > 3,  
{n! + 2, n! + 3 … n! + n} forms a sequence of n – 1 consecutive composite numbers.  

Prime factorisation 

FactorInteger[n] computes the prime factors of n and their power in its prime 

factorisation, for example: 

 

  Thus the prime factorisation of 9864, that is, its representation as a product of 
powers of primes, is 23 × 32 × 1371. The following is a short program in Mathematica 
which defines a new function Factorise[n] that does the re-writing: 
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 The corresponding table for n from 1 to 100 shows that at most four prime factors 
are used for a given number and that the powers of these are generally small. The 
Demonstration http://demonstrations.wolfram.com/FactoringAnInteger/ provides the 
prime factorisation of a number while the Demonstration 
http://demonstrations.wolfram.com/FactorTrees/ gives its factor tree, as illustrated in 
Figure 3. 
 

 

Figure 3. Wolfram Research Demonstration of a factor tree. 
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Finding primes 
There are several proofs that P is an infinite set (that is, there is no largest prime), some 
of them such as Euclid’s proof provide a method for finding a ‘new’ prime (see: 
http://primes.utm.edu/notes/proofs/infinite). A particular type of prime number is a 
factorial prime (see: http://mathworld.wolfram.com/FactorialPrime.html). 
 Factorials can be used to illustrate how one can find some ‘new’ primes. Suppose one 
has already identified all the primes less than or equal to n. Consider n! = n × (n – 1) × 
(n – 2) × (n – 3) × … × 3 × 2 × 1. This is clearly composite, but what about n! + 1? None 
of the numbers 2, 3 … n can be a factor of n! + 1, since there will be a remainder of 1 on 
division. Nor can they be a factor of any other number that is a factor of n! + 1. It may 
be the case that n! + 1 is prime, for example if n = 3 then 3! + 1 = 7 which is prime.  
 On the other hand n! + 1 may not be prime, for example, if n = 4 then 4! + 1 = 25. 
Here 5 is a factor of 25 and is a ‘new’ prime. If a factor of n! + 1 which has been found is 
not prime then the same reasoning can be applied to this number and so on, however 
this process must stop since the factors found in this sequence are getting smaller and 
all such factors must be greater than n. In the worst possible scenario it will turn out 
that n + 1 is a ‘new’ prime as is the case for n = 4. However when n = 10, and hence 10! 
+ 1 = 3628801 the ‘new’ prime found is 329 891. 

 

 The largest currently known factorial prime is 150209! + 1 identified in late 2011. 

Not quite a formula 

There is no known simple polynomial function p: N → R where p(n) = the nth prime 

number. However there are a several low-order polynomial functions that generate 
prime numbers for domain that is an initial sub-sequence of N (see: 
http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html). Perhaps one of 
the best known of these is from Euler: p(n) = n2 – n + 41 which generates 40 distinct 
primes for {0, 1, 2 … 40}. There is an even simpler function from Legendre: p(n) = 2n2 
+ 29 which generates 29 distinct primes for {0, 1, 2 … 28}.  
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 Students could investigate the efficacy of various linear, quadratic and other 
polynomial functions for generating distinct primes on initial sub-sequences of N. 
There are quite a few such quadratic functions, what about linear functions? The 
function f(n) = n6 + 1091 does not generate primes for n = 1 to 3095. What are some 
other ‘prime-avoiding’ polynomial functions? 

Gaussian integers 
The notions of ‘integer’ and ‘prime’ can be extended to complex numbers. A Gaussian 
integer is any complex number of the form a + bi where a and b are integers. Clearly 
the natural numbers are Gaussian integers where a ∈ N and b = 0. The notion of a 

prime number in C, or a Gaussian prime, is analogous to, but a bit more complicated 
than in N. However one can readily observe that some numbers that are prime in N are 
not prime in C. For example 2 and 5 are prime in N but have factorisations (1 + i)(1 – i) 
and (2 + i)(2 – i) respectively in C. It can be shown that any prime natural number of 
the form 4n + 3 is also a Gaussian prime. Two Gaussian primes with non-zero 
imaginary parts are 2 + 3i and 3 + 5i, as also are their conjugates. The Gaussian primes 
are symmetrically distributed about both real and imaginary axes in C as illustrated in 
Figure 4: 

 

Figure 4. Pixel image of Gaussian primes in a radial subset of the complex plane. 
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 Mathematica includes an option for number theoretic functionality to apply for 
Gaussian integers, for example: 

 
and 

 
 These applications and related computations provide teachers and students with the 
opportunity to readily generate a range of examples and counter-examples that can be 
used as a basis for formulating and testing conjectures. They can be naturally 
complemented by related proofs as applicable, in particular where these are of a 
constructive nature. A range of results and proofs involving prime numbers can be 
found at the Australian Mathematical Sciences institute (AMSI) website: 
http://www.amsi.org.au/teacher_modules/Primes_and_Prime_Factorisation.html. 
 This also provides the opportunity to outline some well-known conjectures (that is 
mathematical statements for which there is neither a proof nor a known counter-
example) such as: 

• every even natural number greater than two can be expressed as a sum of two  
• primes (Goldbach’s Conjecture); 
• there are infinitely many primes p such that p + 2 is also prime (the twin prime 

conjecture); 
• there is an odd perfect number (a perfect number is a natural number that is the 

sum of its positive divisors excluding itself) 
• the abc conjecture (see: http://news.sciencemag.org/sciencenow/2012/09/abc-

conjecture.html ) 
• the Gaussian moat problem (see: http://en.wikipedia.org/wiki/Gaussian_moat ). 
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Students’ attitude towards mathematics has been known to influence students’ 
participation, engagement and achievement in mathematics. Attitudes Toward 
Mathematics Inventory (ATMI) was employed to measure change in middle school 
students’ attitudes toward mathematics over time. The instrument was 
administered to 544 Year 7 and Year 8 students in 13 schools in South Australia to 
collect three data points over the academic year 2012. Confirmatory factor analysis 
(to examine factorial invariance) and Rasch analysis (to examine item-level 
invariance) were used. Concurrent equating was employed which rendered the 
scales comparable between occasions. Repeated measures ANOVA was used to 
measure change in mean scaled scores (logits) of students on the four-sub scale of 
ATMI. The results of the study show that students’ attitudes toward mathematics 
generally decline over time during middle school years. 

Introduction 
Australia takes part in a variety of international assessment of mathematics 
achievement. The most influential has been the Programme for International Student 
Achievement (PISA), which assesses 15-year-old students. The other popular 
international survey is Trends in International Mathematics and Science Study 
(TIMSS), which assess students in Year 4 and Year 8. These international studies of 
mathematics achievement over the years have contributed to the observations made 
about falling standards and increasing number of Australian students scoring at or 
below the low benchmark.  
 At national level, all Australian states and territories have testing programmes to 
monitor student achievement. The National Assessment Program—Literacy and 
Numeracy (NAPLAN) tests have been conducted since 2008 across Australia in Years 
3, 5, 7 and 9. The use of a common scale across year levels allows student progress in 
numeracy to be monitored, and also the levels of achievement to be charted over time 
(South Australia’s Action Plan for Literacy and Numeracy, 2010).  
 The South Australian Curriculum Standards and Accountability Framework 
defines the ‘Middle Years Band’ as years 6–9. The achievement levels of middle school 
students in South Australia in international and national student assessments are 
continually showing downward trend.  
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Figure 1. Year 8 mathematics achievement in trends in International Mathematics and Science 
Study (TIMSS) (Thomson, Hillman & Wernet, Schmid, Buckley, & Munene, 2012, p.25). 

 

Figure 2. Mean mathematical literacy scores of 15 year olds for Programme for International 
student Assessment (PISA) Thomson, De Bortoli, Nicholas, Hillman, & Buckley (2011 p. 198). 

 

 

Figure 3. Achievement of Year 7 Students in Numeracy, by state and Territory, 2008, 2011 and 
2012 (NAPLAN National Report, 2012, p. 36). 
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 The performance of South Australian middle school students in mathematics in the 
national (NAPLAN) and international assessments (TIMSS & PISA) is consistently 
declining. These results are considered disappointing and students considered at risk, 
but there is an absence of research studies investigating students’ views on 
mathematics teaching and learning. 
 In Australia, many studies have investigated students’ attitudes toward mathematics 
(e.g., Leder & Forgasz, 2006; Pierce, Stacey & Barkatsas, 2007; Beswick, Watson, 
Brown, Callingham & Wright, 2011), however, such studies are scarce in South 
Australia. This paper reports on students attitudes toward mathematics over time to 
represent ‘student voice’ investigating change in the pattern of their attitudes as they 
move through a range of challenging mathematics curriculum in the middle school. 

Attitudes toward mathematics 
Attitudes have powerful impacts on effective engagement, participation and 
achievement in mathematics (Reynolds and Walberg, 1992; Zan, Brown, Evans & 
Hannula, 2006). They are equally important as content knowledge for students to make 
informed decisions in terms of their willingness to use this knowledge (Wilkins & Ma, 
2003) and their influence range from individual mathematical learner and the 
classroom teacher to the success or failure of massive curricular reforms (Goldin, 
Rösken & Törner, 2009). Middle school years are particularly important when 
examining students’ attitudes toward mathematics. Many students in these years 
experience difficulties that often breed disengagement and negative attitudes toward 
school and reduced self-confidence and motivation particularly in mathematics 
(Sullivan, Tobias & McDonough, 2006). During this crucial period they tend to make 
many long term decisions about themselves and develop an understanding of their 
abilities, leading them to make their future choices (Manning, 1997; Garcia & Pintrich, 
1995). Many students seem to become less optimistic over time about their chances to 
succeed in mathematics (Watt, 2004). Therefore, even though, in general students 
consider mathematics to be a subject of immense importance, many students tend to 
develop unfavourable attitudes toward this domain. There is a fall in student attitude 
and achievement in the middle school years of schooling (Midgley & Edelin, 1998), and 
roughly half of the Year 8 student population taking mathematics courses is lost 
(Schoenfeld, 1992). A meta-analysis of studies revealed that negative disposition 
toward mathematics reaches its peak in Years 9 and 10 with Years 7 and 8 identified as 
significant in its development (Hembree, 1990). Beswick, Watson and Brown (2006) 
observed that the students’ attitudes toward mathematics declined as they progressed 
through school and Yates (2009)suggests that the middle years students should receive 
particular attention. 
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The instrument: Attitudes Toward Mathematics Inventory 
(ATMI) 
In the study, a shorter version of the Attitudes Toward Mathematics Inventory (ATMI) 
(Tapia & Marsh, 2004), which measured four subscales was used; 

• The Self Confidence subscale comprised of 12 items and measured students’ 
confidence and self-concept of (their) performance in mathematics 

• The Value subscale comprised of 9 items and measured students’ beliefs on the 
usefulness, relevance and worth of mathematics to their lives.  

• The Enjoyment subscale comprised of 7 items and measured the degree to which 
students enjoy working (on) mathematics 

• The Motivation subscale comprised of 4 items and measured students’ interest in 
mathematics and (their) desire to pursue further studies in mathematics 

Scoring was done with a five-point Likert Scale. The response options ranged from 1 
(strongly disagree) to 5 (strongly agree). All responses to negatively worded statements 
were reversed prior to the data analysis. 

Participants 
A total of 544 students participated in all three cycles of this study in the academic year 
2012, each cycle was spaced out by 3 months. The respondents were Year 7 & 8 
students in 4 primary and 9 secondary schools of South Australia. The sample included 
government schools, catholic and independent schools. In the sample there were 64% 
female students and 36% male students.  

Method 
The Confirmatory Factor Analysis (CFA) was conducted using SPSS 19 and AMOS 16.0 
which offers a viable method for evaluating construct validity of the instrument. The 
results of CFA of ATMI showed a good model fit for attitudes toward mathematics 
measurement model using several fit indices which include CFI, TLI, GFI, AGFI, and 
RMSEA. The findings revealed that fit indices criteria were satisfied. To assess internal 
consistency, Cronbach’s alpha coefficients for each subscale were estimated and a very 
high Cronbach’s alpha values were obtained for the overall scale and all the individual 
subscales. Concurrent equating is undertaken in order to give equal value to all 
responses on the three occasions and to prepare the data for further analysis. The 
Rasch model was employed for scaling and equating procedures. Tables 1, 3, 5 and 7 
show mean scores for the sub-scales for ATMI that are obtained using the CONQUEST 
programme, logit is the unit of measurement. SPSS 19 was used to run Repeated 
measures ANOVA which compared the mean scaled scores (logits) at multiple time 
periods for this single group of respondents. 
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Results 

Sub-scale Self confidence 

Table 1. Descriptive statistics. 

 Mean  Std. Deviation  N  

SLFCON1  1.0537  1.53394  541  

SLFCON2  1.0569  1.55197  541  

SLFCON3  .9911  1.57329  541  

 

Table 2. Pairwise comparisons. 

Measure: MEASURE_1  

95% Confidence Interval for 
Differencea  

(I) 
SLFCON  

(J) 
SLFCON  

Mean 
Difference (I-
J)  

Std. 
Error  

Sig.a  

Lower Bound  Upper Bound  

2  -.003  .044  1.000  -.110  .103  
1  

3  .063  .048  .582  -.053  .178  

1  .003  .044  1.000  -.103  .110  
2  

3  .066  .038  .242  -.024  .156  

1  -.063  .048  .582  -.178  .053  
3  

2  -.066  .038  .242  -.156  .024  

a. Adjustment for multiple comparisons: Bonferroni.  

 

Sub-scale Value 

Table 3. Descriptive statistics. 

 Mean  Std. Deviation N  

VAL1  2.7479  2.26005  540  

VAL2  2.7905  2.30423  540  

VAL3  2.7533  2.43176  540  

 

Table 4. Pairwise comparisons. 

Measure: MEASURE_1  

95% Confidence Interval for 
Differencea  

(I) 
Val  

(J) 
Val  

Mean Difference 
(I-J)  

Std. 
Error  

Sig.a  

Lower Bound  Upper Bound  

2  -.043  .079  1.000  -.233  .148  
1  

3  -.005  .087  1.000  -.215  .204  

1  .043  .079  1.000  -.148  .233  
2  

3  .037  .079  1.000  -.152  .226  

1  .005  .087  1.000  -.204  .215  
3  

2  -.037  .079  1.000  -.226  .152  

a. Adjustment for multiple comparisons: Bonferroni.  
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Sub-scale Enjoyment 

Table 5. Descriptive statistics. 

 Mean  Std. Deviation N  
ENJ1 .5648228  1.79996221  538 
ENJ2 .5137171  1.67239423  538 
ENJ3 .3447304  1.73866437  538 

 

Table 6. Pairwise comparisons. 

Measure: MEASURE_1  

95% Confidence Interval for 
Differenceb  

(I) 
ENJ  

(J) 
ENJ  

Mean 
Difference (I-J)  

Std. 
Error  

Sig.b  

Lower Bound  Upper Bound  

2  .051  .052  .968  -.073  .175  
1  

3  .220*  .057  .000  .084  .356  

1  -.051  .052  .968  -.175  .073  
2  

3  .169*  .044  .000  .064  .274  

1  -.220*  .057  .000  -.356  -.084  
3  

2  -.169*  .044  .000  -.274  -.064  

*. The mean difference is significant at the .05 level.  

b. Adjustment for multiple comparisons: Bonferroni.  

 

Sub-scale Motivation 

Table 7. Descriptive statistics. 

 Mean  Std. Deviation  N  

MOT1  .7637175  1.75650691  533  

MOT2  .6455214  1.68777225  533  

MOT3  .5976291  1.79052892  533  

 

Table 8. Pairwise comparisons. 

Measure: MEASURE_1  
95% Confidence Interval for Differenceb  (I) 

MOT  
(J) 
MOT  

Mean Difference (I-
J)  

Std. 
Error  

Sig.b  

Lower Bound  Upper Bound  

2  .118  .058  .129  -.022  .258  
1  

3  .166*  .065  .031  .011  .321  

1  -.118  .058  .129  -.258  .022  
2  

3  .048  .053  1.000  -.080  .175  

1  -.166*  .065  .031  -.321  -.011  
3  

2  -.048  .053  1.000  -.175  .080  

*. The mean difference is significant at the .05 level.  
b. Adjustment for multiple comparisons: Bonferroni.  
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Figure 4. Attitudes Toward Mathematics Inventory (ATMI) scales trends. 

Conclusion 
The analysis using Repeated measures ANOVA showed a decline in the mean scaled 
score of the sub-scales of ATMI, except for sub-scale of value which remained stable 
from data point 1 to data point 3 (see Table 4). The mean scaled score of the sub-scale 
of Self- Confidence (see Table 2) declined over the academic year though did not show 
statistical significance. The sub-scales of Enjoyment (see table 6) and Motivation (see 
table 8) showed decline in the mean scaled scores which reach statistical significance at 
95% confidence interval for difference of mean scaled scores. The ATMI scales trend 
(see fig.4) show that students of Year 7 and 8 consider mathematics to be a useful 
subject which has relevance and worth in their lives. The confidence and self-concept of 
their performance in mathematics show a decline but does not establish statistical 
significance. The degree to which students enjoy mathematics shows a fall of statistical 
significance. Students’ interest in mathematics and desire to pursue further studies in 
mathematics post compulsory level also declines which is statistically significant. 
Therefore, it can be concluded on a sound experimental basis that students of Year 7 
and 8 express lack of enjoyment and motivation in mathematics which is likely to 
influence their decisions about pursuing mathematics at post compulsory level and 
hence likely to further contribute to the already declining enrolments in advanced 
mathematics courses in South Australia. 
 Ma and Kishore (1997) acknowledge the complexity of the issue and state that the 
middle school students are at a point where ‘alienation from mathematics’ is at a 
serious level, however, they add that it is also ‘optimally alterable towards engagement.’ 
The analysis confirms that a negative disposition sets in and gains strength when 
students experience challenging mathematical experience in the middle years of 
schooling. Therefore, interventional strategies need to be put in place coupled with 
inspirational teaching to prevent or reverse decline of student attitudes toward 
mathematics.  

0 

0.5 

1 

1.5 

2 

2.5 

3 

1 2 3 

M
ea

n 
Sc

or
e 

(L
og

it)
 

ATMI Scales Trends 

MOT 

SLFCON 

VAL 

ENJ 



MAJEED 

MATHEMATICS: LAUNCHING FUTURES 
192 

References 
Beswick, K., Watson, J. & Brown, N. (2006). Teachers’ confidence and beliefs and their students’ attitudes 

to mathematics. In P. Grootenboer, R. Zevenbergen & M. Chinnappan (Eds), Identities, cultures and 
learning spaces (Proceedings of the 29th annual conference of the Mathematics Education Research 
Group of Australasia, Canberra, pp. 68–75). Adelaide, SA: MERGA. 

Beswick, K., Watson, J., Brown, N., Callingham, R. & Wright, S. (2011). Student attitude change associated 
with teacher professional learning in mathematics. In K. Kislenko (Ed.), Current state of research on 
mathematical beliefs XVI. Proceedings of the MAVI-16 Conference, Tallinn, Estonia (pp. 60–76). 
Tallinn, Estonia: Institute of Mathematics and Natural Sciences, Tallinn University. 

Garcia, T. & Pintrich, P. (1995). The role of possible selves in adolescents’ perceived competence and self-
regulation. Paper presented at the Annual Meeting of the American Educational Research Association, 
San Francisco, CA, 18–22 April. 

Goldin, G. A., Roesken, B. & Toerner, G. (2009). Beliefs: No longer a hidden variable in mathematics 
teaching and learning processes. In J. Maass & W. Schloeglmann (Eds), Beliefs and attitudes in 
mathematics education: New research results (pp. 1–18). Rotterdam: Sense. 

Hembree, R. (1990). The nature, effects and relief of mathematics anxiety. Journal for Research in 
Mathematics Education, 21(1), 33–46. 

Leder, G. C., & Forgasz, H. J. (2006). Affect and mathematics education: PME perspectives. In A. Gutiérrez 
& P. Boero (Eds), Handbook of research on the psychology of mathematics education: Past, present 
and future (pp. 403–427). Rotterdam: Sense. 

Ma, X., & Kishor, N. (1997). Assessing the relationship between attitude toward mathematics and 
achievement in mathematics: A meta-analysis. Journal for Research in Mathematics Education, 28(1), 
26–47. 

Manning, M.L. (1997). A middle-schools maven marks their progress: An interview with John H. 
Lounsbury. The Education Digest, Middle Schools, October, 4–10. 

Midgley, C. & Edelin, K. C. (1998). Middle school reform and early adolescent well-being: The good news 
and the bad. Educational Psychologist, 33(4), 195–206. 

National Assessment Program Literacy and Numeracy NAPLAN Summary Report 2012. Retrieved from 
http://www.naplan.edu.au/reports/national_report.html 

Pierce, R., Stacey, K. & Barkatsas, A. (2007). A scale for monitoring students’ attitudes to learning 
mathematics with technology. Computers & Education, 48, 285–300. 

Reynolds, A. J. & Walberg, H. J. (1992). A process model for mathematics achievement and attitude. 
Journal for Research in Mathematics Education, 23(4), 306–328. 

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense 
making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and 
learning (pp. 334–371). New York: Macmillan. 

South Australia’s Action plan for Literacy and Numeracy www.premcab.sa.gov.au/pdf/coag_ap_literacy 

Sullivan, P., Tobais, S. & McDonough, A. (2006). Perhaps the decision of some students not to engage in 
learning mathematics in school is deliberate. Educational Studies in Mathematics, 62, 81–99. 

Tapia, M., & Marsh, G. E. (2004). An instrument to measure mathematics attitudes. Academic Exchange 
Quarterly, 8(2), 16–21. 

Thomson, S., De Bortoli, L., Nicholas, M., Hillman, K. & Buckley, S. (2011). The challenges for Australian 
education: Result from PISA 2009: The PISA 2009 assessment of students’ reading, mathematical 
and scientific literacy. Melbourne: ACER  

Thomson, S., Hillman, K., Wernert, N., Schmid, M. , Buckley, S, Munene, A. (2012). Highlights from 
TIMSS & PIRLS 2011 from Australia’s perspective. Melbourne: ACER. 

Watt, H. M. G. (2004). Development of adolescents’ self perceptions, values and task perceptions 
according to gender and domain in 7th through 11th grade Australian students. Child Development, 75, 
1556–74. 

Wilkins, J. L. M. & Ma, X. (2003). Modeling change in student attitude toward and beliefs about 
mathematics. The Journal of Educational Research, 97(1), 52–63  

Yates, S. (2009). The “back to basics” dilemma for middle school mathematics teachers. In R. Hunter, B. 
Bicknell & T. Burgess (Eds), Crossing divides: Proceedings of the 32nd annual conference of the 
Mathematics Education Research Group of Australasia (Vol. 2). Palmerston North, NZ: MERGA. 

Zan, R., Brown, L., Evans, J. &. Hannula, M. S. (2006). Affect in mathematics education: An introduction. 
Educational Studies in Mathematics 63(2), 113–121. 

 

 



 

MATHEMATICS: LAUNCHING FUTURES • © AAMT 2013 
193 

CONSTRUCTING A TETRAHEDRON IN MICROWORLD: 
POTENTIAL FUTURE RESEARCH AND PRACTICE 

ANDY YEH 

Queensland University of Technology 

a.yeh@qut.edu.au 

MATTHEW PEILE 

Queensland University of Technology 

matthew.peile@student.qut.edu.au 

 
Traditionally, the teaching and learning about 3-D shapes has utilised concrete 
materials such as solid wood, plastic connectors and paper nets for modelling. 
While they are good materials, limitations such as time, accuracy, manipulability 
and creativity , etc. could apply. This paper presents how a 3-D microworld named 
VRMath 2.0 (VRMath2) can be utilised to construct a tetrahedron from within a 
cube, which would be difficult to do with real materials. The use of virtual 
materials, in addition to real materials, would have implications on how the 
teaching and learning about 3-D geometry could be enhanced, and how the human 
spatial cognition and abilities can be further researched. 

Introduction 
Human spatial ability is a factor of intelligence and is an important predictor of future 
career paths, especially in scientific research, engineering and the arts (Ivie & 
Embretson, 2010). Pittalis and Christou (2010) also pointed out that spatial abilities 
are closely related to academic achievement, particularly in mathematics and geometry. 
In other words, learning about geometry would contribute to the development of 
spatial abilities.  
 The teaching and learning about three-dimensional (3-D) shapes (a topic in 
Measurement and Geometry) in primary school classrooms usually starts with real 
objects in the natural environment, then formalises into more regular shapes such as 
sphere (ball), cube (box), cylinder (can), cone, prism and pyramid. Typical activities 
include students constructing drawings, interpreting diagrams, and constructing 
physical models using nets or concrete materials. Concrete materials play an important 
role for school children to recognise, identify, visualise, and examine the properties of 
shapes. However, the use of concrete materials could be time consuming for 
preparation and construction. Flexible materials (e.g., sticks and foam balls, rubber 
bands, straws and pipe-cleaners) can have accuracy issues when measuring and they 
are not easy to put together. Solid materials (e.g., timber, plasticine, paper and 
cardboard) may prevent students from visualising invisible edges. The use of 
commercial shape connectors with some standard units could also be inflexible for 
construction (e.g., designed only for certain 3-D shapes, could only connect in certain 
angles, no diagonal length). These conditions of concrete materials could limit the 
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creativity and further development of geometrical understanding of 3-D shapes and 
spatial abilities such as spatial visualisation, spatial orientation, and spatial relations 
(for details about the three spatial abilities, see Lohman, 1988). 
 The use of information and communication technology (ICT) tools can address most 
of the issues above. ICT tools such as LOGO microworld and Dynamic Geometry 
Software (DGS) are intuitive to use, accurate when constructing geometric objects, easy 
to manipulate once the geometric objects are created, and expressive13 to create 
geometric objects. The power of LOGO is its ability to express natural geometric 
movement and the programming language, which links multiple representations of 
mathematical entities (Hoyles, Noss & Adamson, 2002). However, most of the LOGO 
environments are lacking interactive graphics, particularly on 3-D capabilities. DGS, on 
the contrary, has great interactive 3-D graphics that allow direct manipulation of 
virtual geometric objects, but it often has no natural expressions of movement nor a 
focus on programmability. It is often perceived that DGS operates on more formal 
geometric thinking and reasoning as it is mostly based on Euclidean geometry. 
Constructing 3-D shapes using ICT tools usually force and require learners to use and 
develop their understanding of geometrical relationships to produce dynamic “figures”, 
rather than static “drawings” (Jones, 2000). This is one key aspect for developing deep 
geometric understanding. 
 Based on the information presented above, it was thought that an ICT tool 
empowered by natural expressions of geometric movement, programming ability and a 
3-D interactive graphic, could not only enable children to develop deeper 
understanding about 3-D geometry, but also develop a wide range of spatial abilities 
through new ways of thinking and doing in the new computational environment 
(Resnick, 1996). Therefore, the purpose of this paper is to demonstrate how to create a 
tetrahedron in such an ICT tool environment, named VRMath 2.0 (VRMath2), as an 
example, and discuss its implications for potential future research and practice.  

The learning environment: VRMath2 
VRMath2 is an open online learning environment. It has three main components: an 
interactive virtual reality (VR) 3-D interface, a 3-D programming interface, and a Web 
2.0 style sharing and collaborating interface. This paper focuses on the first two 
interfaces (see Figure 1).  
 The VR interface is virtually an unlimited 3-D space, in which learners can navigate 
to see the virtual world from any perspective, and interact with the objects created in 
the virtual space. As a VR space, the objects in it include visible geometric objects with 
rich colours and textures, and invisible environmental objects such as light, sound and 
camera viewpoints. This interface helps develop spatial visualisation when 
manipulating geometric objects, particularly in small scale, and spatial orientation and 
relations when navigating, particularly in large scale. One thing to note about this 3-D 
VR graphic is that its unit of measurement is not based on pixels on a screen as other 2-
D or 3-D computer graphics. As its name “virtual reality” implies, this VR 3-D space 

                                                

13  The ICT tools provide facilities such as movement commands, mouse dragging actions, and colours and 
textures for users to express their ideas. 
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utilises units that can be interpreted as metres to reflect the real world settings and to 
work with the Cartesian coordinate system.  

 

Figure 1. VRMath2. 

 The programming interface includes fully functional LOGO programming language 
and a set of graphic user interfaces (GUI) to assist with the creation of virtual worlds. 
Because of 3-D, this LOGO has an extended set of 3-D movement commands (Figure 2) 
and 3-D geometric primitives commands. 
 

   

 
Figure 2. GUI of 3-D movement commands. 

 Using the concept of frame of reference (FOR), these 3-D movements can be 
classified into two categories: egocentric and fixed movements. The egocentric 
movements include FORWARD14 (FD), BACK (BK), and the six turns of RIGHT (RT), 
LEFT (LT), ROLLUP (RU), ROLLDOWN (RD), TILTRIGHT (TR) and TILTLEFT (TL). 
These egocentric movements are based on the orientation of the turtle in the 3-D space. 
The fixed movements are the four compass points EAST, WEST, NORTH and SOUTH, 
plus the UP and DOWN. These movements express a relationship to a fixed direction 
and are not related to the turtle’s orientation. HOME is a special fixed movement as it 
brings the turtle back to home—position (0, 0, 0), facing north with back up. There is 
also a set of coordinate commands (universal FOR) that changes the turtle’s position 
(or location) by specifying the x, y and z coordinate. For example, SETPOS [x, y, z] will 

                                                

14  The VRMath2 Logo commands are case insensitive. For ease of reading, we use capital letters for Logo 
commands in the paragraphs. If programmed in Lego Editor, we simply use small letters for Logo 
commands.  
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move the turtle to the specified coordinate [x, y, z]. With these natural expressions of 3-
D movement, the turtle is able to turn in any direction and move to any location to 
create objects in the 3-D virtual space. 
 As a programming language, LOGO can create variables to store information and 
customise commands. For example, MAKE “p1 POS will store the turtle’s current 
position to the variable named p1. The command POS is a built-in command which 
returns the turtle’s coordinate. The MAKE command takes two inputs, and stores the 
value of the second input into the first input. Once this is done, SETPOS :p1 will then 
take the turtle to the coordinate (location or position) stored in p1. 
 It is also very easy to customise a command in LOGO. For example, if SETPOS is 
hard for young children to remember, we may create an easier command called GOTO 
instead. We can type in the Logo Editor with the following program and execute: 

TO GOTO :place 
SETPOS :place 
END  

 The key words TO and END specify the beginning and end of a procedure or 
command. The GOTO is the procedure’s name. The :place specifies that the procedure 
GOTO will take in an input. This new GOTO procedure will then pass on the input 
:place to SETPOS command. Therefore, after the procedure GOTO is defined 
(executed), GOTO :p1 will be doing the same as SETPOS :p1.  

Construction of tetrahedron in VRMath2 
The tetrahedron is one of the five Platonic solids, which are among the regular 3-D 
shapes constructed in primary school classrooms. The construction of a tetrahedron 
can be a simple process when using paper nets or commercial shape connectors (see 
Figure 3).  

    

Figure 3. Tetrahedron net and models. 

 The use of concrete materials allows children to easily identify the properties of 
tetrahedron as four faces of equilateral triangles, four vertices and six edges. And as in 
most 3-D shapes, the angles (between two faces and between an edge and a face) within 
are not easy to find or measure. Therefore, it is in fact more complex and difficult to 
construct in ICT tools. 
 The construction of a tetrahedron from within a cube is an extension of learning 
about the relationships between the two. It is a good activity to develop children’s 
geometric understanding, and spatial visualisation and orientation abilities. The use of 
concrete materials can be beneficial, however, they start to reveal some limitations. As 
can be seen in Figure 4, the shape connectors do not have diagonal connectors. 
Therefore, blu-tack was used to secure the edges of tetrahedron on some vertices. 
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Although it is possible to use concrete materials to achieve this task, the cube frame 
could distract from the visualisation of the tetrahedron in the cube. The tetrahedron 
inside the cube is also only a frame. It could also be difficult for children to visualise the 
four triangle faces. Using concrete materials to create the four faces could be very 
difficult. ICT tools such as VRMath2 can address the limitations that arise from using 
concrete materials. 

 

Figure 4. Tetrahedron in cube. 

 To construct a tetrahedron in VRMath2, one can use trigonometry to find out the 
angles to turn, then forward (move) the turtle to create edges or faces. For example, 
the angle between an edge and a face is  
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⎟= arctan 2( )≅ 54.7356°  

and the angle between two faces (dihedral) is  
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⎠
⎟= arctan 2 2( )≅ 70.5288° . 

 In LOGO, one can simply type in RU acrtan(sqrt(2)) to pitch up the angle between 
an edge and a face. 
 For young children, who do not know about trigonometry, it is suggested that 
teachers start with discussions about a cube on a drawing or using concrete materials 
(Figure 5). 

 

Figure 5. Cube with labelled vertices. 

 In these discussions, the eight vertices of the cube become the eight positions (or 
locations), which can be labelled as p1 to p8. The 3-D Cartesian coordinate system is 
not necessary here, although it may be used by upper primary or secondary students 
who have prior knowledge about 3-D Cartesian coordinates. 
 Then in VRMath2, these eight positions can be stored in eight variables named as p1 
to p8. To do so, we need to command the turtle to move into those eight positions. This 
can be achieved by using the movement icons (Figure 2) in Quick Command and 
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Console (Figure 1). Or if students are familiar with movement commands, they can use 
their mental imagery (with or without the help of Figure 5) and program in the Logo 
Editor as below: 

cs ; clear screen 
point ; enter point mode 
pd ; pen down 
make "p1 pos ; create variable p1 with value of current position 
fd 1 rt 90 ; forward 1 metre, right turn 90 degrees 
make "p2 pos 
fd 1 rt 90 
make "p3 pos 
fd 1 rt 90 
make "p4 pos 
fd 1 rt 90 
up 1 ; fixed FOR command to move turtle up 1 metre without changing its direction. 
make "p5 pos 
fd 1 rt 90 
make "p6 pos 
fd 1 rt 90 
make "p7 pos 
fd 1 rt 90 
make "p8 pos 
pu ; pen up 

 In the above program, the semicolon sign (;) denotes that what follows are 
comments only. The POINT command in second line specifies the pen mode (turtle 
track) to be point only. Other pen mode commands include LINE and FACE. The pen 
mode commands need to be given before PENDOWN (PD), and during PD, the pen 
mode cannot be changed. As can be seen in the program, the turtle will be moving 
through the eight positions, and will leave eight points track in the 3-D space when 
executed (see Figure 6). 

 

Figure 6. Cube vertices in VRMath2. 

 Next, the discussion will focus on the properties of tetrahedron. Since the faces of 
tetrahedron are equilateral triangles, we need to find four sets of three positions out of 
the eight and connect them to form four triangles. Another idea could be to find the 
four vertices in the eight positions, then connect the four vertices with lines, or utilise 
the four vertices to construct the four triangle faces. There could be a couple of 
possibilities and it is a good idea to try from the first position p1. With the help of 
concrete materials (e.g., Figure 5) or the navigation in the VR space, students should be 
able to find that it cannot be in adjacent positions and the four edges would be the 
diagonal of the square faces on the cube. The following program demonstrates how to 
start from p1 to create a tetrahedron in the cube. 

P1 

P2 
P3 

P4 

P5 
P6 

P8 

P7 



YEH & PEILE 

MATHEMATICS: LAUNCHING FUTURES 
199 

setpos :p1 ; set position to p1 
ncon ; next colour on, this will help create colour rich triangles 
face ; change to face mode 
pd ; pen down for first triangle 
setpos :p3 
setpos :p6 ; as the turtle has moved through p1, p3 and p6, a triangle face will be created 
pu ; pen up for the end of first triangle 
setpos :p1 
pd ; this pd creates the second triangle with vertices in position p1, p6 and p8 
setpos :p6 
setpos :p8 
pu ; end of the second triangle 
pd ; this pd creates the third triangle with vertices in position p8, p6 and p3 
setpos :p6 
setpos :p3 
pu ; end of the third triangle 
pd ; this pd creates the fourth triangle with vertices in position p3, p1 and p8 
setpos :p1 
setpos :p8 
pu ; end of the fourth triangle and the tetrahedron 

 When the above program is executed, a colourful tetrahedron will be created in the 
3-D virtual space. We can hide the turtle by clicking an icon or giving a command 
HIDETURTLE (HT) for better views of the tetrahedron. The cube vertices and each of 
the four triangle faces can also be hidden to examine the construction process. Figure 7 
below shows the process of construction. 

    

Figure 7. Construction process of tetrahedron in VRMath2. 

Implications for future research and practice 
In this paper, we have demonstrated the construction of a tetrahedron from within a 
cube in a powerful ICT tool or microworld named VRMath2. VRMath2 has a VR 3-D 
interface, a programming interface, and a social (web 2.0 style) interface. The VR 3-D 
interface allows users to navigate in virtual worlds and examine and interact with 
virtual objects. The programming interface allows users to use natural expressions of 3-
D movement and programming language to create virtual objects in virtual worlds. The 
social interface enables users to share their creations of virtual worlds and collaborate 
with other users. We think that VRMath2 represents a new paradigm of computing, 
and this new paradigm of thinking and doing mathematics would have some profound 
implications for future research and practice. 
 For research, VRMath2 is a pertinent vehicle for investigating and developing 
human spatial cognition and abilities. Because of its VR 3-D interface, users will 
naturally tend to think 3-D and work 3-D. Unlike the 3-D interfaces in other ICT tools 
that focus on one or a few classical geometric shapes, this VR 3-D space enable users to 
think and reason on the larger scale of 3-D worlds as well as on the smaller scale of 
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geometric objects. The larger scale of virtual worlds provides opportunity particularly 
for the operation and development of spatial orientation ability. The smaller scale of 
geometric objects will particularly facilitate the operation and development of spatial 
visualisation ability. The construction of virtual objects and worlds in VRMath2 using 
LOGO programming language will also assist the operation and development of spatial 
relations ability. VRMath2 is rich in facilities that encourage users to express their 
thinking and ideas. When users express their thinking and ideas via programming 
and/or blogging their creations, their artefacts will help research into how we think, 
reason and develop our spatial abilities. 
 For practice, VRMath2 is also a vehicle to foster creativity. The unlimited virtual 
space and programming means endless possibilities of design and creation. When 
creating a virtual world, there are always many ways of doing and solving problems. 
For example, to connect or move from p1 to p3 in the tetrahedron task, instead of 
SETPOS :p3, a more natural way of TOWARDS :p3 FORWORD DISTANCEBETWEEN 
:p1 :p3 can also achieve the same result. Furthermore, creating a virtual world in 
VRMath2 is not just for making classroom geometric objects. With rich textures and 
environmental effects, the creation and construction of virtual worlds in VRMath2 can 
have virtually any object (such as a building, a table, a chair or a tree) that appear in the 
real world. Learning in VRMath2 is truly by designing and doing. Teachers can design 
learning and assessment activities using VRMath2, with possibilities to integrate 
disciplines such as mathematics, arts, science, engineering and technology. 
 To conclude, this paper has presented a new microworld named VRMath2 and 
demonstrated the construction of a tetrahedron in this microworld. We hope that the 
construction of a tetrahedron in VRMath2 serves as a good example to encourage more 
future research and practice. And from more future research and practice, VRMath2 
can evolve towards a better learning environment for all.  
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Empowering teachers to collaborate in new ways to see how they can: 
• improve their ‘assessment for learning’ through the innovative use of their 

school photocopier as a high speed scanner obtaining exceptionally powerful 
insights into their assessment of written responses and multiple choice 
assessment; 

• measure ‘the effect size’ of their teaching through the use of pre-test/post-test 
scenarios; 

• reduce their workload and increase their students’ rate of learning compared 
with the national average; 

• identify gaps in student learning at any point in time not observable under 
conventional assessment; 

• quantify question quality through the automatic application of classical test 
theory. 

Introduction 
I heard a keynote speaker at a recent conference ask the question, “What profession 
ignores its own research more than education?” With this in mind, how is it that we as a 
profession can sometimes get it wrong when it comes to improving literacy and 
numeracy outcomes? “The Australian National Audit Office found that an ambitious 
$540 million scheme introduced by the Rudd Government, in an attempt to lift literacy 
and numeracy skills, made no discernible difference to the results of the schools taking 
part.” (Courier Mail, 1 August 2012, p. 23) 
 By contrast, Professor Helen Timperley more than doubled the learning gain of 
students in 300 New Zealand primary schools and the biggest winners were the 
schools’ lowest-performing students—the bottom 20 per cent. Their achievement gains 
grew three to four times faster than the expected rate nationally (Milburn, 2009). 
 Laptop computers are seen by some as a solution to educational productivity. 
However, a ten million dollar research project in 2004 reported by Hu (2007) showed 
that there was no significant improvement in educational outcomes by students with 
laptops compared with those without laptops. This calls into question how the 
education dollar is best used. 
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 On the sporting field, the Olympic Games are often seen as our nation’s sporting 
benchmark, whereas, the Trends in International Mathematics and Science Study 
(TIMSS) can be seen as one of education’s.  
 The average success of Australian students in Mathematics in TIMSS for the period 
1995 to 2011 can be seen in Figure 1 (Thomson, Hillman & Wernert, 2012, p. 17). The 
fact that the trend is not going up is of major concern. When we compare trends of 
teaching success for Korea and Chinese Taipei (Figure 2; Thomson, Hillman & 
Wernert, 2012, p. 17) with Australia’s, the result is alarming. 
 It can be seen therefore that Australia needs to take a really hard look at ‘lifting its 
game’. 

 

Figure 1.  

  
Figure 2.  

 At this point we might recall a quote from Winston Churchill when things were grim 
during WWII, “It is no use saying, ‘We are doing our best’; we have to succeed in doing 
what is necessary.” 

AutoMarque 

AutoMarque enables educators to obtain exceptionally powerful insights into their 
assessment of written responses, multiple choice assessments and practical work. 
Teachers will learn about the quality of their interventions as well as reducing some 
aspects of their workload and be able to improve students’ outcomes to at least double 
the rate of the national average gain.  
 With this in mind a teacher is now able, with AutoMarque, to mark thirty students’ 
paper based responses to multiple choice questions, in less than two minutes, using a 
photocopier connected to a computer.  

Assessment of written work 
One of the major challenges teachers are confronted with almost every day is how to 
improve students’ capacities to write assignments. The author contends that this task 
can be more effectively achieved when teachers list in detail what is expected of 
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students. This can be illustrated by showing students examples of quality work (Petty, 
2006, p. 90; Hattie, 2009, p. 172). 
 However, showing students quality work is, in itself necessary but not sufficient. 
If a rubric sheet with scoring apportioned is used by teachers then the data produced 
can be used in two ways; 
1. As explicit feedback to the student. 
2. As forensic feedback to the teacher to obtain: 

• better understanding of her/his teaching effectiveness 
• identification of common learning gaps across a teaching group 
• the learning needs of each student. 

When the learning needs of a large portion of a teaching group appear to be in common 
a digital rubric is used to explain the quality of each component in a piece of work. This 
is also used as an assessment instrument to aid in the forensic analysis of students 
learning needs. An example of a digital rubric can be found at Annex A. 
 You will note that the digital rubric consists of a number of questions all of which 
can be answered in binary terms. That is either ‘yes’ or ‘no’, or if you prefer ‘competent’ 
or ‘not competent’. 
 Once the digital rubric is developed by the teacher, it is initially used as a list of 
things to taught and then be used as a marking and feedback tool. 
 However, before giving the assessed digital rubric sheets to their students (as 
detailed feedback) teachers scan them a photocopier using AutoMarque to obtain 
powerful insights not otherwise observable.  
 This form of assessment enables the ready application of 21st century skills (Critical 
thinking, analytical, reasoning and problem solving skills) and the analysis of student 
progress, aside from the pedagogical challenges that they present. 

Teacher self-assessment  
“It is critical that teachers learn about the success or otherwise of their interventions” 
(Hattie, 2009, p. 24). According to Hattie (2009, p. 241), students already know about 
forty per cent of the material the teacher is planning to teach. That being the case, it is 
essential that teachers can quickly identify the student knowledge base and adapt their 
pedagogy accordingly.  
 How does AutoMarque inform the teacher of his her teaching effectiveness? 
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Figure 3. Initial student results. 

 After scanning either, multiple choice sheets, practical digital rubric analysis sheets 
or written digital rubric analysis sheets you open AutoMarque on your computer and 
the results appear as per Figure 3, in two columns raw score and percentage. 
 Until now, a class list of results like this is all that teachers have had, limiting teacher 
understanding of student learning needs. 
 AutoMarque’s power is in the icons at the top of the results sheet. 

 To obtain results by strand of learning click on , one of sixteen icons available. 
Figure 3 is a summarized version of the class’ success by strand of learning. In this case, 
the teacher needs to reconceptualise his/her teaching of the three strands of learning in 
which the class performed poorly.  
 

 

Figure 4. Class success by strand of learning 
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 To obtain results per question, click on . Figure 5 shows the students’ results per 
question and the strand of learning to which each question belongs and an indication of 
the overall reliability of the test.  

 

Figure 5. Class results per question 

 Reliability of the test is calculated by AutoMarque using the Kuder Richardson 
formula 20 (KR20) test of reliability. KR20 is the most accurate of the practical Kuder 
Richardson formulas for estimates of reliability. It measures consistency of responses 
to all the items within the test. It is the mean of all possible split half coefficients 
Athanasou & Lamprianou, 2002).  
 If one or more of the questions require more than one response to obtain a correct 
answer then the reliability analysis used is Chronback’s Alpha coefficient of reliability. 

 

Figure 6. Results re-sorted to show the least well understood 

 Figure 6, identifies the questions that were least well performed by the class. In 
effect, Figures 4, 5 and 6 provide a teacher with insights into her/his teaching 
effectiveness enabling immediate redirection of the teaching effort, where necessary, to 
meet the class’ needs. Similarly, if it is evident that the students know what is being 
taught then time is saved by immediately moving on to new work. 
 The detailed results of a digital rubric seen in this way transforms teaching to a new 
powerful level. 
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 When compared with the traditional practice of revising the whole test, teachers are 
now able to define the areas of weakness in learning in a class as a whole and 
concentrate their teaching resources to address the class’ specific learning needs.  
The author understands this aspect of AutoMarque’s output is one of the many ‘world 
first’ benefits it provides. 
 When pre-test/post-test analysis is conducted by AutoMarque it insights for 
teachers on the quality of their practice, (Figure 7) showing the difference per strand of 
learning and the effect size of the teaching group’s learning gain (Hattie, 2009, p. 8). 

 

Figure 7. Teaching effectiveness 

 This print out is expected to be the subject of much discussion about how best to 
teach particular concepts; thus improving student outcomes in new ways. 
When teachers aim to demonstrate excellence in teaching by regularly creating an effect 
size of better than 0.7, students results are likely to rocket ahead. 

Student work 
Prompt feedback to each student when assessed by multiple choice assessment is 

readily achieved by clicking on the print icon within AutoMarque  and they appear 
as shown in Figure 8. This removes the need for hand marking multiple choice student 
work and yet provides detailed feedback. This is in line with Hattie’s findings that 
feedback is one of the most powerful things you can do for your students in their 
process of learning. 
 Assessment for learning as detailed above, has great potential to assist teachers 
improve the quality of their teaching but will not necessarily deliver insights into 
individual student needs.  
 Individual student results, by strand of learning, compared with their peer group are 

obtained on the click of a mouse on . This provides a powerful insight into an 
individual student’s needs (Figure 9). In this instance, the student’s teacher would not 
have known that the student could not do any of the ‘chance and data’ questions even 
though he obtained 62% in the test overall. It can be seen therefore that this feedback 
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provides powerful insight into a gap in learning that would otherwise have been 
invisible. How many other students learning needs like this are going unnoticed?  

 

Figure 8. An example of automated feedback to students. 

 

Figure 9. A Student’s results per strand of learning compared with the class average. 

 AutoMarque’s student strand analysis result sheet is of great assistance when 
counselling the teacher’s supervisor that intervention is required. As AutoMarque 
stores test results, a history of student achievement is readily retrievable and student 
progress easily and clearly demonstrated.  
 This ‘one off’ glimpse is further improved when the same test is conducted a second 
time as shown in Figure 10. For teachers who wish to create a feeling of progress 
amongst their students this facility is particularly powerful. The inclusion of the index 
of educational growth (effect size) provides a further quantification of the learning that 
has taken place.  
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Figure 10. A student’s results over time per strand of learning. 

 If you would like to see how a student has succeeded in one strand of learning over a 

series of assessments it is only a matter of clicking on  to obtain an image like that 
in figure 11. So long as the strand has the same name it can analyse a student’s success 
in a range of subjects. For example the strand “Number’ could be tracked across 
Commerce, Science and Maths providing new powerful insights not previously 
available. 

 

Figure 11. Tracking of a strand of learning (Number) across different assessments. 

 If a teacher wants to obtain an overview as to which students have similar gaps in 
learning, AutoMarque’s ‘needs analysis’ shows this in Figure 12. It ranks students from 
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the least successful to the most successful in a particular strand. AutoMarque also 
enables the ranking of a series of classes within an institution, based on a single strand 
of learning. Consequently, a more tactical approach can identify groups of students who 
have similar needs enabling targeted remediation. 

 

Figure 12. Learning needs analysis. 

Identification of quality questions 
There are considerable resources on the ‘net’, usually in pdf format, available for 
teachers to acquire. The quality of these questions can then be assessed by 
AutoMarque. AutoMarque requires a minimum of 100 students to have completed an 
identical test before the question quality analysis (item analysis) can take place. 

 

Figure 13. Item analysis. 

 In Figure 13, we see how five classes, 130 students, have completed an identical test 
and that an analysis of each question is displayed as well as an indication of the test’s 
overall reliability.  
 AutoMarque expresses the difficulty of a question as a percentage of the students 
who answered incorrectly. For discrimination, the software uses a Point Biserial 
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Coefficient of Correlation between the correctness of the response to the given question 
and the students’ result in the test as a whole (Athanasou & Lamprianou, 2002, p. 309). 
The confidence intervals displayed are indicated by the length of each line, per 
question, for difficulty and discrimination. The line’s length is inversely proportional to 
the square root of the sample size. This helps raise the quality of a teacher’s work and 
the consequent improvement in students’ outcomes.  

Surveys: Rating scale analysis 
It is one thing to know a student could not correctly answer a particular question in an 
assessment, (as shown above); it is another thing to be able to understand why. 
AutoMarque provides two techniques to assist teachers to understand more about 
student misunderstanding or wrong thinking, they are: 

• generation of a spreadsheet for detailed perusal, and  
• segment analysis of student responses. 

A spreadsheet is generated by clicking on  in AutoMarque, part of which is seen in 
figure14. The spreadsheet enables the teacher to identify the distracters chosen by 
students for each question. For example, in question five only 12 per cent of the 
students selected the correct answer, ‘A’, while 81 per cent chose ‘B’. Looking at the 
nature of distracter ‘B’, the teacher can see which students did not understand this 
specific aspect of the subject and help them accordingly.  

  

Figure 14. Spread sheet of class responses. 

 This same process of data collection can be used for surveys of students to monitor 
student well being (minimise bullying), student sports carnival choices, optional 
subject choices and parent satisfaction surveys. School psychologists find 
AutoMarque’s ability to save them time and provide them with insightful results a great 
advantage. AutoMarque’s ease of data collection reduces teacher and teacher leaders’ 
workloads and yet provides insights not previously obtainable without considerable 
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time consumption. Hence the expression, “Let the photocopier do your work”. The use 
of segment analysis of student responses is even more powerful in analysing student 

thinking. This is obtained by clicking on  to obtain a graph describing the student’s 
thinking, Figure 15. 

 

Figure 15. Segment analysis of student thinking. 

 In this instance the student had completed a diagnostic test on the manipulation of 
fractions. The observer will see that the student was adding and subtracting without 
using a common denominator.  

Conclusion 
Imagine, if you will, that you are alerted by AutoMarque, that the last unit you had 
taught was not understood by most of your students and that the pedagogical 
methodology you had applied at the time was the one you had been using for many 
years. In discussions with colleagues about how they taught such material you learn 
they use the same pedagogical methodology. Would not this be a handy wakeup call for 
your team to look afresh at how the unit could be better taught?  
 This has been a brief summary of some of the features of AutoMarque and its 
benefits for teachers and above all, their students. It is clear from the above that we 
have a resource that provides teachers with an efficient self-coaching/advice tool on 
their teaching effectiveness and student learning needs, enabling the development of 
effective individual learning plans well-grounded on a powerful data base. 
When teachers master the development of digital rubrics in conjunction with 
AutoMarque they too will find their and their students’ lives changed for the better. 
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